Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Braz. j. med. biol. res ; 44(11): 1097-1104, Nov. 2011. ilus
Article in English | LILACS | ID: lil-604280

ABSTRACT

Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR). The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR) to the affected organ (lung). Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.


Subject(s)
Humans , Adenoviruses, Human , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Genetic Therapy/methods , Genetic Vectors/therapeutic use , Adenoviruses, Human/classification , Gene Transfer Techniques
2.
Braz J Med Biol Res ; 44(11): 1097-104, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21952739

ABSTRACT

Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR). The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR) to the affected organ (lung). Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.


Subject(s)
Adenoviruses, Human , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/therapy , Genetic Therapy/methods , Genetic Vectors/therapeutic use , Adenoviruses, Human/classification , Gene Transfer Techniques , Humans
3.
Respir Physiol Neurobiol ; 169(1): 62-8, 2009 Oct 31.
Article in English | MEDLINE | ID: mdl-19712760

ABSTRACT

We examined whether recruitment maneuvers (RMs) with gradual increase in airway pressure (RAMP) provide better outcome than continuous positive airway pressure (CPAP) in paraquat-induced acute lung injury (ALI). Wistar rats received saline intraperitoneally (0.5 mL, CTRL) or paraquat (15 mg/kg, ALI). Twenty-four hours later lung mechanics [static elastance, viscoelastic component of elastance, resistive, viscoelastic and total pressures] were determined before and after recruitment with 40cmH2O CPAP for 40s or 40-s-long slow increase in pressure up to 40cmH2O (RAMP) followed by 0 or 5 cmH2O PEEP. Fractional area of alveolar collapse and PCIII mRNA were determined. All mechanical parameters and the fraction area of alveolar collapse were higher in ALI compared to CTRL. Only RAMP-PEEP maneuver significantly improved lung mechanics and decreased PCIII mRNA expression (53%) compared with ALI, while both RMs followed by PEEP decreased alveolar collapse. In conclusion, in the present experimental ALI model, RAMP followed by 5cm H2O PEEP yields a better outcome.


Subject(s)
Acute Lung Injury/physiopathology , Lung/pathology , Positive-Pressure Respiration/methods , Recruitment, Neurophysiological/physiology , Respiratory Mechanics/physiology , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Analysis of Variance , Animals , Collagen Type III/genetics , Collagen Type III/metabolism , Disease Models, Animal , Gene Expression Regulation , Lung/metabolism , Lung Volume Measurements , Paraquat , RNA, Messenger/metabolism , Rats , Rats, Wistar
4.
Respir Physiol Neurobiol ; 168(3): 203-9, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19573627

ABSTRACT

This study investigated whether repeated administration of recombinant adeno-associated virus type 5 (rAAV5) to the airways induces inflammatory processes in the lungs of BALB/c-mice, with mechanical and histologic changes. Saline was instilled intratracheally in the control group, and rAAV5-green fluorescence protein (GFP) (4x10(11)particles) in the virus group (VR). These groups were subdivided into four subgroups: one dose analyzed 3 weeks later (VR1d3w) and two doses analyzed 1 (VR2d1w), 2 (VR2d2w) and 3 weeks (VR2d3w) after the second dose. Lung morphometry, mechanical parameters, airway responsiveness, rAAV5-GFP transduction and the expression of inflammatory cytokines were investigated. No significant differences in lung mechanics, airway responsiveness, and morphometry were observed. Re-administration of rAAV5 vector resulted in a decrease in GFP mRNA expression in the VR2d3w group. There was no evidence of inflammatory response or apoptosis in any group. rAAV5 did not induce an inflammatory process, mechanical or morphometric changes in the lungs. AAV5 may be an appropriate vector for lung gene therapy.


Subject(s)
Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Pneumonia/etiology , Pneumonia/pathology , Airway Resistance , Analysis of Variance , Animals , Apoptosis , Disease Models, Animal , Green Fluorescent Proteins/genetics , In Situ Nick-End Labeling , Male , Mice , Mice, Inbred BALB C , RNA, Messenger/metabolism , Respiratory Mechanics/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...