Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Artif Intell ; 6(3): e230375, 2024 May.
Article in English | MEDLINE | ID: mdl-38597784

ABSTRACT

Purpose To explore the stand-alone breast cancer detection performance, at different risk score thresholds, of a commercially available artificial intelligence (AI) system. Materials and Methods This retrospective study included information from 661 695 digital mammographic examinations performed among 242 629 female individuals screened as a part of BreastScreen Norway, 2004-2018. The study sample included 3807 screen-detected cancers and 1110 interval breast cancers. A continuous examination-level risk score by the AI system was used to measure performance as the area under the receiver operating characteristic curve (AUC) with 95% CIs and cancer detection at different AI risk score thresholds. Results The AUC of the AI system was 0.93 (95% CI: 0.92, 0.93) for screen-detected cancers and interval breast cancers combined and 0.97 (95% CI: 0.97, 0.97) for screen-detected cancers. In a setting where 10% of the examinations with the highest AI risk scores were defined as positive and 90% with the lowest scores as negative, 92.0% (3502 of 3807) of the screen-detected cancers and 44.6% (495 of 1110) of the interval breast cancers were identified with AI. In this scenario, 68.5% (10 987 of 16 040) of false-positive screening results (negative recall assessment) were considered negative by AI. When 50% was used as the cutoff, 99.3% (3781 of 3807) of the screen-detected cancers and 85.2% (946 of 1110) of the interval breast cancers were identified as positive by AI, whereas 17.0% (2725 of 16 040) of the false-positive results were considered negative. Conclusion The AI system showed high performance in detecting breast cancers within 2 years of screening mammography and a potential for use to triage low-risk mammograms to reduce radiologist workload. Keywords: Mammography, Breast, Screening, Convolutional Neural Network (CNN), Deep Learning Algorithms Supplemental material is available for this article. © RSNA, 2024 See also commentary by Bahl and Do in this issue.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Early Detection of Cancer , Mammography , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/diagnosis , Female , Mammography/methods , Norway/epidemiology , Retrospective Studies , Middle Aged , Early Detection of Cancer/methods , Aged , Adult , Mass Screening/methods , Radiographic Image Interpretation, Computer-Assisted/methods
2.
Radiology ; 309(1): e230989, 2023 10.
Article in English | MEDLINE | ID: mdl-37847135

ABSTRACT

Background Few studies have evaluated the role of artificial intelligence (AI) in prior screening mammography. Purpose To examine AI risk scores assigned to screening mammography in women who were later diagnosed with breast cancer. Materials and Methods Image data and screening information of examinations performed from January 2004 to December 2019 as part of BreastScreen Norway were used in this retrospective study. Prior screening examinations from women who were later diagnosed with cancer were assigned an AI risk score by a commercially available AI system (scores of 1-7, low risk of malignancy; 8-9, intermediate risk; and 10, high risk of malignancy). Mammographic features of the cancers based on the AI score were also assessed. The association between AI score and mammographic features was tested with a bivariate test. Results A total of 2787 prior screening examinations from 1602 women (mean age, 59 years ± 5.1 [SD]) with screen-detected (n = 1016) or interval (n = 586) cancers showed an AI risk score of 10 for 389 (38.3%) and 231 (39.4%) cancers, respectively, on the mammograms in the screening round prior to diagnosis. Among the screen-detected cancers with AI scores available two screening rounds (4 years) before diagnosis, 23.0% (122 of 531) had a score of 10. Mammographic features were associated with AI score for invasive screen-detected cancers (P < .001). Density with calcifications was registered for 13.6% (43 of 317) of screen-detected cases with a score of 10 and 4.6% (15 of 322) for those with a score of 1-7. Conclusion More than one in three cases of screen-detected and interval cancers had the highest AI risk score at prior screening, suggesting that the use of AI in mammography screening may lead to earlier detection of breast cancers. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Mehta in this issue.


Subject(s)
Breast Neoplasms , Female , Humans , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Mammography/methods , Retrospective Studies , Artificial Intelligence , Early Detection of Cancer/methods , Risk Factors , Mass Screening/methods
3.
Eur J Radiol ; 167: 111061, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37657381

ABSTRACT

PURPOSE: To explore Norwegian breast radiologists' expectations of adding artificial intelligence (AI) in the interpretation procedure of screening mammograms. METHODS: All breast radiologists involved in interpretation of screening mammograms in BreastScreen Norway during 2021 and 2022 (n = 98) were invited to take part in this anonymous cross-sectional survey about use of AI in mammographic screening. The questionnaire included background information of the respondents, their expectations, considerations of biases, and ethical and social implications of implementing AI in screen reading. Data was collected digitally and analyzed using descriptive statistics. RESULTS: The response rate was 61% (60/98), and 67% (40/60) of the respondents were women. Sixty percent (36/60) reported ≥10 years' experience in screen reading, while 82% (49/60) reported no or limited experience with AI in health care. Eighty-two percent of the respondents were positive to explore AI in the interpretation procedure in mammographic screening. When used as decision support, 68% (41/60) expected AI to increase the radiologists' sensitivity for cancer detection. As potential challenges, 55% (33/60) reported lack of trust in the AI system and 45% (27/60) reported discrepancy between radiologists and AI systems as possible challenges. The risk of automation bias was considered high among 47% (28/60). Reduced time spent reading mammograms was rated as a potential benefit by 70% (42/60). CONCLUSION: The radiologists reported positive expectations of AI in the interpretation procedure of screening mammograms. Efforts to minimize the risk of automation bias and increase trust in the AI systems are important before and during future implementation of the tool.


Subject(s)
Artificial Intelligence , Motivation , Female , Humans , Male , Cross-Sectional Studies , Norway , Radiologists
4.
Acta Radiol Open ; 11(4): 20584601221097458, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35558898

ABSTRACT

Background: The increase of neoadjuvant treatment for breast cancer creates a capacity challenge as response evaluation by magnetic resonance imaging (MRI) is a limited resource. Contrast-enhanced ultrasound (CEUS) has been proposed as an alternative imaging strategy. Purpose: To get experience with examination of malignant breast tumors with CEUS and evaluate the potential for future use in response evaluation of neoadjuvant treatment. Material and methods: In this pilot study, the dynamic contrast-enhancement of ultrasound and MRI examinations were analyzed in 14 women with histologically verified breast cancer. Results: Analysis of the time intensity curve of CEUS demonstrated the difference between tumor and normal tissue. The peak intensity was five times higher in tumor tissue (mean increase 397%, 95% CI 250-545). The curve was steeper for tumor tissue (mean 1.76, 95% CI 1.26-2.26) than for normal tissue (mean 0.43, 95% CI 0.24-0.62). Conclusion: CEUS is a feasible method of examining blood flow in malignant breast tumors.

5.
Eur Radiol ; 32(9): 5974-5985, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35364710

ABSTRACT

OBJECTIVES: To analyze rates, odds ratios (OR), and characteristics of screen-detected and interval cancers after concordant and discordant initial interpretations and consensus in a population-based screening program. METHODS: Data were extracted from the Cancer Registry of Norway for 487,118 women who participated in BreastScreen Norway, 2006-2017, with 2 years of follow-up. All mammograms were independently interpreted by two radiologists, using a score from 1 (negative) to 5 (high suspicion of cancer). A score of 2+ by one of the two radiologists was defined as discordant and 2+ by both radiologists as concordant positive. Consensus was performed on all discordant and concordant positive, with decisions of recall for further assessment or dismiss. OR was estimated with logistic regression with 95% confidence interval (CI), and histopathological tumor characteristics were analyzed for screen-detected and interval cancer. RESULTS: Among screen-detected cancers, 23.0% (697/3024) had discordant scores, while 12.8% (117/911) of the interval cancers were dismissed at index screening. Adjusted OR was 2.4 (95% CI: 1.9-2.9) for interval cancer and 2.8 (95% CI: 2.5-3.2) for subsequent screen-detected cancer for women dismissed at consensus compared to women with concordant negative scores. We found 3.4% (4/117) of the interval cancers diagnosed after being dismissed to be DCIS, compared to 20.3% (12/59) of those with false-positive result after index screening. CONCLUSION: Twenty-three percent of the screen-detected cancers was scored negative by one of the two radiologists. A higher odds of interval and subsequent screen-detected cancer was observed among women dismissed at consensus compared to concordant negative scores. Our findings indicate a benefit of personalized follow-up. KEY POINTS: • In this study of 487,118 women participating in a screening program using independent double reading with consensus, 23% screen-detected cancers were detected by only one of the two radiologists. • The adjusted odds ratio for interval cancer was 2.4 (95% confidence interval: 1.9, 2.9) for cases dismissed at consensus using concordant negative interpretations as the reference. • Interval cancers diagnosed after being dismissed at consensus or after concordant negative scores had clinically less favorable prognostic tumor characteristics compared to those diagnosed after false-positive results.


Subject(s)
Breast Neoplasms , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Early Detection of Cancer/methods , Female , Humans , Mammography/methods , Mass Screening/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...