Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1145182, 2023.
Article in English | MEDLINE | ID: mdl-37091980

ABSTRACT

Bisphenol S (BPS), the main replacement for bisphenol A (BPA), is thought to be toxic, but limited information is available on the effects of Bisphenol S on ovarian follicles. In our study, we demonstrated the presence of Bisphenol S in the follicular fluid of women at a concentration of 22.4 nM. The effect of such concentrations of Bisphenol S on oocyte maturation and subsequent embryo development is still unknown. Therefore, we focused on the effect of Bisphenol S on in vitro oocyte maturation, fertilization, and embryo development. As a model, we used porcine oocytes, which show many physiological similarities to human oocytes. Oocytes were exposed to Bisphenol S concentrations similar to those detected in female patients in the ART clinic. We found a decreased ability of oocytes to successfully complete meiotic maturation. Mature oocytes showed an increased frequency of meiotic spindle abnormalities and chromosome misalignment. Alarming associations of oocyte Bisphenol S exposure with the occurrence of aneuploidy and changes in the distribution of mitochondria and mitochondrial proteins were demonstrated for the first time. However, the number and quality of blastocysts derived from oocytes that successfully completed meiotic maturation under the influence of Bisphenol S was not affected.

2.
Front Cardiovasc Med ; 9: 917989, 2022.
Article in English | MEDLINE | ID: mdl-36072861

ABSTRACT

Recent studies have suggested a pathogenetic link between impaired mitochondria and Takotsubo syndrome (TTS), which is closely connected with catecholamine overstimulation, poor outcomes, and changes in lipid metabolism. We investigated the changes in lipid metabolism at the level of fatty acid ß-oxidation and changes in the intracellular lipidomic spectrum. The immortalized cell line of HL-1 cardiomyocytes was used in this study as an established in vitro model of TTS. The cells were exposed to the non-selective ß-agonist isoprenaline (ISO) for acute (2 h) and prolonged (24 h) periods. We investigated the impact on mitochondrial adenosine 5'-triphosphate (ATP) production and ß-oxidation using real-time cell metabolic analysis, total lipid content, and changes in the lipidomic spectrum using high-performance liquid chromatography (HPLC) and mass spectrometry. Furthermore, modifications of selected lipid transporters were determined using real-time - polymerase chain reaction (RT-PCR) and/or Western blot techniques. By choosing this wide range of targets, we provide a detailed overview of molecular changes in lipid metabolism during catecholamine overstimulation. The present study demonstrates that acute exposure to ISO decreased ATP production by up to 42.2%, and prolonged exposure to ISO decreased ß-oxidation by 86.4%. Prolonged exposure to ISO also increased lipid accumulation by 4%. Lipid spectrum analysis of prolonged exposure to ISO showed a reduced concentration of cardioprotective and an increased concentration of lipotoxic lipid molecules during long-term exposure. Decreased lipid utilization can lead to higher intracellular lipid accumulation and the formation of lipotoxic molecules. Changes in the lipid spectrum can induce pathophysiological signaling pathways leading to cardiomyocyte remodeling or apoptosis. Thus, changes in lipid metabolism induced by excessive doses of catecholamines may cause TTS and contribute to a progression of heart failure, which is at increased risk after a TTS episode.

3.
Theriogenology ; 155: 17-24, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32590076

ABSTRACT

Sequence differences are considered to be the basic cause of developmental failure in interspecies embryos when more distant species are combined. However, other phenomena, such as insufficient or excessive quantity of specific cellular factors, might also influence the outcome. These effects are usually not considered. One of the organelles shown to contain different amount of proteins is the oocyte nucleolus-like body. Here we show that upon interspecies transfer, a single porcine nucleolus-like body is unable to support the development of a mouse parthenogenetic embryo derived from an enucleolated oocyte. However, when the amount of the porcine nucleolar material is increased to equalize the amount of mouse nucleolar material by transferring two nucleolus-like bodies, mouse embryos are able to pass the developmental block elicited by enucleolation. These embryos progress to the blastocyst stage at rates comparable to controls. Thus, using the model of an interspecies nucleolus-like body transplantation between mouse and pig oocytes, we show that an inadequate amount of nucleolar factors, rather than the species origin, affects the development. In a wider context of interspecies nuclear transfer schemes, the observed incompatibility between more distant species might not stem simply from sequence differences but also from improper dosage of key cellular factors.


Subject(s)
Embryonic Development , Oocytes , Animals , Blastocyst , Cell Nucleolus , Female , Mice , Nuclear Transfer Techniques/veterinary , Pregnancy , Swine
4.
Int J Dev Biol ; 63(3-4-5): 253-258, 2019.
Article in English | MEDLINE | ID: mdl-31058302

ABSTRACT

The oocyte GV/GVs (germinal vesicle/germinal vesicles) and zygot PN/PNs (pronucleus/pronuclei) of some mammals contain clearly visible nucleoli which exhibit an atypical morphological structure. These nucleoli (NCLs) can be relatively easily manipulated, i.e. removed from GVs/PNs or eventually transferred into another oocyte/zygote. Thus, with the help of micromanipulation techniques it was possible to uncover the real function(s) they play in processes of oocyte maturation and early embryonic development. The purpose of our review is to describe briefly the micromanipulation techniques that can be used for oocyte/zygote nucleoli manipulation. Moreover, we present some examples of results that were obtained in nucleolus manipulation experiments.


Subject(s)
Cell Nucleolus/transplantation , Oocytes/cytology , Zygote/cytology , Animals , Cell Nucleolus/metabolism , Mice , Micromanipulation/methods , Oocytes/drug effects , Parthenogenesis , Swine
5.
J Reprod Dev ; 58(3): 371-6, 2012.
Article in English | MEDLINE | ID: mdl-22293324

ABSTRACT

Compared with advanced developmental stage embryos and somatic cells, fully grown mammalian oocytes contain specific nucleolus-like structures (NPB - nucleolus precursor bodies). It is commonly accepted that they serve as a store of material(s) from which typical nucleoli are gradually formed. Whilst nucleoli from somatic cells can be collected relatively easily for further biochemical analyses, a sufficient number of oocyte nucleoli is very difficult to obtain. We have found that isolated oocytes nucleoli fuse very efficiently when contact is established between them. Thus, well visible giant nucleoli can be obtained, relatively easily handled and then used for further biochemical analyses. With the use of colloidal gold staining, we estimated that a single fully grown mouse oocyte nucleolus contains approximately 1.6 ng of protein. We do believe that this approach will accelerate further research aiming at analyzing the composition of oocyte nucleoli in more detail.


Subject(s)
Cell Nucleolus/metabolism , Gene Expression Regulation , Nuclear Transfer Techniques , Oocytes/cytology , Animals , Cell Culture Techniques , Cell Nucleolus/physiology , Cell Nucleus , Chromatin/metabolism , DNA Damage , Embryo Culture Techniques , Female , Gold Colloid/pharmacology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...