Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Vet Sci ; 11: 1376057, 2024.
Article in English | MEDLINE | ID: mdl-38812559

ABSTRACT

The purpose of this study was to improve the quality of frozen-thawed Piedmontese bull semen by incorporating MitoTEMPO (MT) in extended semen before cryopreservation. Semen was collected from 4 fertile bulls, using an artificial vagina, once weekly for 6 consecutive weeks. Semen samples were pooled, diluted with Bullxcell® extender, and supplemented with different concentrations of MT (0 as control, 5, 10, 20, 40, and 80 µM) before cooling, equilibration, and freezing procedures. The frozen-thawed semen was assessed for motility, vitality, acrosome intactness, plasma membrane integrity, DNA integrity, apoptosis, mitochondrial membrane potential, intracellular ROS level and in vitro fertilizing capability. The results showed that MT at concentrations of 10, 20, and 40 µM improved the total, progressive, and rapid motility directly after thawing while, at the highest tested concentration (80 µM), it decreased the progressive and rapid motility after 1, 2, and 3 h of incubation. The sperm kinetics including STR and LIN were noticeably increased at concentrations of 10, 20, and 40 µM directly after thawing (0 h), whereas the MT effect was variable on the other sperm kinetics during the different incubation periods. MitoTEMPO improved the sperm vitality at all tested concentrations, while the acrosomal and DNA integrity were improved at 20 µM and the mitochondrial membrane potentials was increased at 80 µM. The cleavage and blastocyst formation rates were significantly increased by using semen treated with 20 µM MT compared with controls. These findings suggest a potential use of MT mainly at a concentration of 20 µM as an additive in the cryopreservation media of bull semen to improve sperm quality.

2.
Animals (Basel) ; 14(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38473192

ABSTRACT

Reproductive biotechnologies can be used as a supporting tool, through gamete conservation and in vitro embryo production, in the preservation of invaluable and irreplaceable animal genetic resources. In the present study, immature mouflon cumulus-oocyte complexes (COCs) collected from ovariectomized female ovaries underwent short- or long-term conservation (24 h maintained in Earle's/Hank's (EH) medium or vitrification) under field conditions and afterwards transported to the laboratory where they were cultured for in vitro maturation (IVM) and assessed for oocyte meiotic competence and bioenergetic-oxidative status. Utilization of both storage techniques led to COC morphology preservation, as well as cumulus expansion and oocyte meiotic resumption after the IVM procedure. Quantitative bioenergetic-oxidative parameters were reduced in vitrified oocytes compared with EH ones. Immature COC storage needs to be optimized in both domesticated and non-domesticated sheep as a part of the strategy to avoid the loss of valuable genotypes of these animal species.

3.
Nat Biomed Eng ; 8(3): 310-324, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38036616

ABSTRACT

Advances in immunology, immuno-oncology, drug discovery and vaccine development demand improvements in the capabilities of flow cytometry to allow it to measure more protein markers per cell at multiple timepoints. However, the size of panels of fluorophore markers is limited by overlaps in fluorescence-emission spectra, and flow cytometers typically perform cell measurements at one timepoint. Here we describe multi-pass high-dimensional flow cytometry, a method leveraging cellular barcoding via microparticles emitting near-infrared laser light to track and repeatedly measure each cell using more markers and fewer colours. By using live human peripheral blood mononuclear cells, we show that the method enables the time-resolved characterization of the same cells before and after stimulation, their analysis via a 10-marker panel with minimal compensation for spectral spillover and their deep immunophenotyping via a 32-marker panel, where the same cells are analysed in 3 back-to-back cycles with 10-13 markers per cycle, reducing overall spillover and simplifying marker-panel design. Cellular barcoding in flow cytometry extends the utility of the technique for high-dimensional multi-pass single-cell analyses.


Subject(s)
Leukocytes, Mononuclear , Light , Humans , Flow Cytometry/methods
4.
APL Photonics ; 8(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-38031595

ABSTRACT

Semiconductor-based laser particles (LPs) with exceptionally narrowband spectral emission have been used in biological systems for cell tagging purposes. Fabrication of these LPs typically requires highly specialized lithography and etching equipment, and is typically done in a cleanroom environment, hindering the broad adoption of this exciting new technology. Here, using only easily accessible laboratory equipment, we demonstrate a simple layer-by-layer fabrication strategy that overcomes this obstacle. We start from an indium phosphide (InP) substrate with multiple epitaxial indium gallium arsenide phosphide (InGaAsP) layers which are sequentially processed to yield LPs of various compositions and spectral properties. The LPs isolated from each layer are characterized, exhibiting excellent optical properties with lasing emission full width at half maximum as narrow as < 0.3 nm and typical thresholds of approximately 6 pJ upon excitation using a 3 ns pulse duration 1064 nm pump laser. The high quality of these particles renders them suitable for large-scale biological experiments including those requiring spectral multiplexing.

5.
Animals (Basel) ; 13(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37508148

ABSTRACT

Gentile di Puglia (GdP) is an autochthonous sheep breed of Southern Italy included among ovine breeds threatened by genetic erosion and extinction risk, which have been given attention by local and international institutions, thus emphasizing the need for germplasm conservation actions. In the present study, two assisted reproduction approaches, finalized for GdP conservation, were performed: (1) on-farm reproductive efficiency evaluation, expressed as pregnancy rate (PR), twin pregnancy rate (tPR), and body condition score (BCS), for three consecutive breeding cycles and (2) pre-pubertal lambs' immature cumulus-oocyte complex (COC) retrieval, vitrification, in vitro maturation (IVM), and assessment of meiotic stage and bioenergetic-oxidative status compared with those of other Italian and European commercial breeds. PR and tPR were progressively reduced over time. In all clinical examination times, BCS was significantly lower in nonpregnant ewes compared with pregnant ones. Fresh GdP pre-pubertal lamb COCs achieved meiotic maturation and showed healthy bioenergetic-oxidative status after IVM. Vitrification reduced the oocyte maturation rate in all groups. However, mature oocytes retained their cytoplasmic maturity, expressed as a mitochondria distribution pattern and activity, indicating promising developmental competence. In conclusion, clinical- and biotechnological-assisted reproduction approaches can support conservation strategies of GdP and other local sheep breeds in Southern Italy.

6.
ACS Nano ; 17(16): 16048-16055, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37523588

ABSTRACT

Nanolasers have great potential for both on-chip light sources and optical barcoding particles. We demonstrate ultrasmall InGaP and InGaAsP disk lasers with diameters down to 360 nm (198 nm in height) in the red spectral range. Optically pumped, room-temperature, single-mode lasing was achieved from both disk-on-pillar and isolated particles. When isolated disks were placed on gold, plasmon polariton lasing was obtained with Purcell-enhanced stimulated emission. UV lithography and plasma ashing enabled wafer-scale fabrication of nanodisks with an intended random size variation. Silica-coated nanodisk particles generated stable subnanometer spectra from within biological cells across an 80 nm bandwidth from 635 to 715 nm.

7.
Biology (Basel) ; 12(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36829526

ABSTRACT

Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.

8.
Theriogenology ; 198: 217-223, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36610371

ABSTRACT

Dairy cows diagnosed with metritis may experience a greater degree of oxidative stress (OS) and a deficit in the antioxidative capacity compared to healthy cows. We aimed to assess circulating OS markers and endometrial cell mitochondrial function, intracellular reactive oxygen species (ROS) production, and mean endometrial nuclear cell area in postpartum cows diagnosed with metritis or as healthy. From an initial pool of 121 Holstein cows, we retrospectively selected 34 cows and balanced for metritis (n = 17) or healthy (n = 17). Metritis was defined as an enlarged uterus with red-brown watery or thick off-white purulent discharge occurring within 21 days postpartum. Cows with no signs of clinical disease (including dystocia or retained placenta) were referred to as healthy. Blood samples for serum reactive oxygen metabolites (d-ROM), antioxidants (OXY), and oxidative status index (OSI) tests, evaluated via photometric determination of plasma thiols, were performed at 7, 14, 21, 28, and 35 days postpartum. Furthermore, from the initial pool, a random subset of 5 cows diagnosed with metritis and 6 diagnosed as healthy we collected (at the same time points as for the blood samples) endometrial cytology samples using the cytobrush technique. From the uterine samples, we evaluated the endometrial cell mitochondrial function, intracellular ROS levels, and the endometrial cell nuclear area using MitoTracker Orange, dichlorodihydrofluorescein diacetate, and Hoechst 33258, respectively. Mixed linear regression models, accounting for repeated measurements, were fitted to assess the effect of metritis versus healthy on circulating and endometrial cell OS parameters and endometrial cell size. The effect of days postpartum and its interaction with uterine health status were forced into each model. Serum concentrations of d-ROMs and OSI were greater in metritis at 7, 14, and 35 days postpartum than in healthy cows. Interestingly, the mean endometrial cell nuclear area was lower in metritis than healthy cows at 14 and 21 days postpartum. We found no differences between metritis and healthy for endometrial cell mitochondrial function and intracellular ROS production. In conclusion, cows diagnosed with metritis experienced greater systemic OS levels than healthy cows, but their OS was not higher in the uterine milieu.


Subject(s)
Cattle Diseases , Endometritis , Pregnancy , Female , Cattle , Animals , Endometritis/veterinary , Lactation , Reactive Oxygen Species , Retrospective Studies , Cattle Diseases/diagnosis , Postpartum Period , Antioxidants/metabolism , Oxidative Stress
9.
Adv Photonics ; 5(5)2023 Sep.
Article in English | MEDLINE | ID: mdl-38993283

ABSTRACT

Micro- and nano-disk lasers have emerged as promising optical sources and probes for on-chip and free-space applications. However, the randomness in disk diameter introduced by standard nanofabrication makes it challenging to obtain deterministic wavelengths. To address this, we developed a photoelectrochemical (PEC) etching-based technique that enables us to precisely tune the lasing wavelength with sub-nanometer accuracy. We examined the PEC mechanism and compound semiconductor etching rate in diluted sulfuric acid solution. Using this technique, we produced microlasers on a chip and isolated particles with distinct lasing wavelengths. Our results demonstrate that this scalable technique can be used to produce groups of lasers with precise emission wavelengths for various nanophotonic and biomedical applications.

10.
Animals (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36428406

ABSTRACT

The purpose of this study was to determine the effect on fresh and post-thaw beef bull semen quality of the supplementation of epidermal growth factor (EGF) to the semen extender at various concentrations (0-control, 50, 100, 200, and 400 ng/mL). For 8 weeks, sperm was collected from four fertile bulls, yielding a total of 32 ejaculates. Semen samples were pooled, diluted with Bullxcell® extender, and then cooled, equilibrated, and frozen. After thawing, semen was tested for motility and velocity parameters. Furthermore, semen was evaluated for vitality, integrity, mitochondrial and antioxidant (SOD) activities, mucus penetration distance, and in vitro fertilizing capability. The supplementation with EGF prior to cryopreservation improved the total sperm motility at various concentrations over long incubation periods (from 1 to 4 h). Interestingly, EGF addition improved both progressive and rapid motility, particularly at 50, 200, and 400 ng/mL. In addition, EGF, primarily at 200 and 400 ng/mL, significantly increased several velocity parameters after different incubation periods. We can conclude that adding EGF to bull sperm extender before cryopreservation has a positive stimulatory effect on sperm motility without affecting vitality, integrity, or in vitro fertilizing capability.

11.
Cells ; 11(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36429039

ABSTRACT

In conventional assisted reproductive technologies (ARTs), oocytes are in vitro cultured in static conditions. Instead, dynamic systems could better mimic the physiological in vivo environment. In this study, a millifluidic in vitro oocyte maturation (mIVM) system, in a transparent bioreactor integrated with 3D printed supports, was investigated and modeled thanks to computational fluid dynamic (CFD) and oxygen convection-reaction-diffusion (CRD) models. Cumulus-oocyte complexes (COCs) from slaughtered lambs were cultured for 24 h under static (controls) or dynamic IVM in absence (native) or presence of 3D-printed devices with different shapes and assembly modes, with/without alginate filling. Nuclear chromatin configuration, mitochondria distribution patterns, and activity of in vitro matured oocytes were assessed. The native dynamic mIVM significantly reduced the maturation rate compared to the static group (p < 0.001) and metaphase II (MII) oocytes showed impaired mitochondria distribution (p < 0.05) and activity (p < 0.001). When COCs were included in a combination of concave+ring support, particularly with alginate filling, oocyte maturation and mitochondria pattern were preserved, and bioenergetic/oxidative status was improved (p < 0.05) compared to controls. Results were supported by computational models demonstrating that, in mIVM in biocompatible inserts, COCs were protected from shear stresses while ensuring physiological oxygen diffusion replicating the one occurring in vivo from capillaries.


Subject(s)
In Vitro Oocyte Maturation Techniques , Ovary , Female , Sheep , Animals , In Vitro Oocyte Maturation Techniques/methods , Oocytes/physiology , Oxygen , Alginates/pharmacology
12.
Theriogenology ; 192: 141-149, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36099804

ABSTRACT

This work aimed to determine the effect of cysteamine (25, 50, 100 and 200 µM) incorporated during dilution on frozen thawed buffalo semen quality. Semen was collected twice weekly for 7 consecutive weeks from three Egyptian buffalo bulls using an artificial vagina. Semen samples were pooled and extended with a Tris-based extender, cooled, equilibrated and finally frozen in liquid nitrogen. The diluted semen was evaluated for motility, viability, morphology, plasma membrane and DNA integrity, in addition to oxidative stress and in vitro fertilizing capability. The post thaw motility and velocity parameters noticeably increased with different concentrations of cysteamine (mainly 100 µM) during different incubation periods. The post thaw sperm viability and normality significantly (p < 0.05) improved with concentrations of 50 and 100 µM. Plasma membrane integrity substantially increased at all concentrations of cysteamine. Cysteamine reduced alanine aminotransferase (at all concentrations), aspartate aminotransferase (at 25-100 µM), and creatine kinase (at 100 and 200 µM). Cysteamine at a concentration of 100 µM noticeably enhanced the total antioxidant capacity and glutathione peroxidase and decreased nitric oxide production. Cysteamine, at concentrations of 100 and 200 µM, increased the DNA intensity in the comet head (%) and decreased the DNA % in the comet tail. The comet tail length and moment substantially decreased at concentrations of 50-200 µM. Cysteamine did not affect the in vitro fertilizing capability of sperm. In conclusion, cysteamine incorporation (mainly at a concentration of 100 µM) in buffalo semen extender showed varying protective effects on different sperm parameters against cryo-damage; however, it did not affect the in vitro fertilizing capacity of sperm.


Subject(s)
Bison , Semen Preservation , Alanine Transaminase , Animals , Antioxidants/pharmacology , Aspartate Aminotransferases , Buffaloes , Creatine Kinase , Cryopreservation/veterinary , Cryoprotective Agents/pharmacology , Cysteamine/pharmacology , Dietary Supplements , Female , Glutathione Peroxidase , Male , Nitric Oxide , Nitrogen/pharmacology , Semen , Semen Analysis/veterinary , Semen Preservation/veterinary , Sperm Motility , Spermatozoa
13.
J Anim Sci Biotechnol ; 13(1): 83, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35864507

ABSTRACT

BACKGROUND: Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might negatively affect female reproduction and fertility. It has been reported that Cd exposure impaired the quality of oocytes and led to a defective maturation and fertilization, through oxidative stress induction. Resveratrol (Res) is a natural polyphenol with strong antioxidant properties that exhibited protective role in preventing oocyte redox homeostasis disruption and quality decline. Here, we explored whether the addition of Res to in vitro maturation (IVM) medium might act as a protection against Cd-induced toxicity on ovine oocyte maturation and fertilization. Firstly, we evaluated the effect of supplementing IVM medium with two different Res concentrations (1 and 2 µmol/L) on nuclear maturation and fertilization of oocytes matured under CdCl2 (2 µmol/L) exposure. Therefore, the concentration of 1 µmol/L Res was selected to analyse the effects of this compound on intracellular ROS levels, mitochondrial (mt) distribution and activity, chromatin configuration, cytoskeleton morphology, cortical granules (CGs) distribution and mRNA expression of genes associated with cellular response to oxidative stress (i.e. SIRT1, SOD 1, GPX1, GSR, CAT) in Cd-exposed in vitro matured oocytes. RESULTS: We found that 1 µmol/L Res restored the reduced oocyte meiotic competence induced by Cd exposure as well as, Res sustained oocyte ability to be normally fertilized and decreased polyspermic fertilization at both tested concentrations. Moreover, we demonstrated that 1 µmol/L Res mitigated Cd-induced alterations of oocyte cytoplasmic maturation by reducing reactive oxygen species (ROS) accumulation, preventing mt dysfunction, maintaining the correct meiotic spindle and cortical F-actin assembly and the normal cortical granule distribution as well as up-regulating SIRT1, SOD1 and GPX1 genes. CONCLUSIONS: Taken together, our findings highlighted the beneficial influence exerted by Res in preventing Cd-induced disturbance of nuclear and cytoplasmic maturation and subsequent fertilization in ovine oocytes. Res treatment may help to establish defence strategies counteracting Cd-induced toxicity on the female gamete.

14.
Lab Chip ; 22(12): 2343-2351, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35621381

ABSTRACT

Laser particles providing bright, spectrally narrowband emission renders them suitable for use as cellular barcodes. Here, we demonstrate a microfluidic platform integrated with a high-speed spectrometer, capable of reading the emission from laser particles in fluidic channels and routing cells based on their optical barcodes. The sub-nanometer spectral emission of each laser particle enables us to distinguish individual cells labeled with hundreds of different laser colors in the near infrared. Furthermore, cells tagged with laser particles are sorted based on their spectral barcodes at a kilohertz rate by using a real-time field programmable gate array and 2-way electric field switch. We demonstrate several different flavors of sorting, including isolation of barcoded cells, and cells tagged with a specific laser color. We term this novel sorting technique laser particle activated cell sorting (LACS). This flow reading and sorting technology adds to the arsenal of single-cell analysis tools using laser particles.


Subject(s)
Lasers , Microfluidics , Cell Separation/methods , Light , Single-Cell Analysis
15.
PLoS One ; 16(6): e0253536, 2021.
Article in English | MEDLINE | ID: mdl-34166427

ABSTRACT

Diagnostic imaging has significantly grown over the last thirty years as indispensable support for diagnostic, prognostic, therapeutic and monitoring procedures of human diseases. This study explored the effects of low-dose X-ray medical diagnostics exposure on female fertility. To aim this, cumulus-oocyte complexes (COCs) recovered from the ovaries of juvenile sheep and human ovaries were used as complementary models for in vitro studies. In the sheep model, the effects of low-dose X-rays on oocyte viability and developmental competence were evaluated. In human ovaries originated from two age group (21-25 and 33-36 years old) subjects with gender dysphoria, X-rays effects on tissue morphology, follicular density and expression of apoptosis-related (NOXA, PUMA, Bcl2, Bak, γH2AX) and cell cycle-related genes (p21 and ki67) were investigated. It was noted that in sheep, the minimum dose of 10 mGy did not influence most of examined parameters at oocyte and embryo levels, whereas 50 and 100 mGy X-ray exposure reduced oocyte bioenergetic/oxidative activity but without any visible effects on oocyte and embryo development. In addition, blastocyst bioenergetic/oxidative status was reduced with all used doses. Overall data on human ovaries showed that low-dose X-rays, similarly as in sheep, did not alter any of examined parameters. However, in women belonging to the 33-36 year group, significantly reduced follicular density was observed after exposure to 50 and 100 mGy, and increased NOXA and Bax expression after exposure at 50 mGy. In conclusion, used low-doses of X-ray exposure, which resemble doses used in medical diagnostics, produce weak damaging effects on female fertility with increased susceptibility in advanced age.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/radiation effects , Energy Metabolism/radiation effects , Oocytes/metabolism , Ovary/metabolism , X-Rays , Adult , Animals , Female , Humans , In Vitro Oocyte Maturation Techniques , Ovary/diagnostic imaging , Oxidation-Reduction/radiation effects , Radiography , Sheep
16.
Biomed Opt Express ; 12(3): 1437-1448, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33796364

ABSTRACT

Brillouin light scattering offers a unique label-free approach to measure biomechanical properties non-invasively. While this technique is used in biomechanical analysis of cells and tissues, its potential for visualizing structural features of tissues based on the biomechanical contrast has not been much exploited. Here, we present high-resolution Brillouin microscopy images of four basic tissue types: muscular, connective, epithelial, and nervous tissues. The Brillouin contrast distinguishes between muscle fiber cells and endomysium in skeletal muscle and reveals chondrocytes along with spatially varying stiffness of the extracellular matrix in articular cartilage. The hydration-sensitive contrast can visualize the stratum corneum, epidermis, and dermis in the skin epithelium. In brain tissues, the Brillouin images show the mechanical heterogeneity across the cortex and deeper regions. This work demonstrates the versatility of using the Brillouin shift as histological contrast for examining intact tissue substructures via longitudinal modulus without the need for laborious tissue processing steps.

18.
Light Sci Appl ; 10(1): 23, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33495436

ABSTRACT

The ability to track individual cells in space over time is crucial to analyzing heterogeneous cell populations. Recently, microlaser particles have emerged as unique optical probes for massively multiplexed single-cell tagging. However, the microlaser far-field emission is inherently direction-dependent, which causes strong intensity fluctuations when the orientation of the particle varies randomly inside cells. Here, we demonstrate a general solution based on the incorporation of nanoscale light scatterers into microlasers. Two schemes are developed by introducing either boundary defects or a scattering layer into microdisk lasers. The resulting laser output is omnidirectional, with the minimum-to-maximum ratio of the angle-dependent intensity improving from 0.007 (-24 dB) to > 0.23 (-6 dB). After transfer into live cells in vitro, the omnidirectional laser particles within moving cells could be tracked continuously with high signal-to-noise ratios for 2 h, while conventional microlasers exhibited frequent signal loss causing tracking failure.

19.
Mycotoxin Res ; 37(1): 23-37, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32996062

ABSTRACT

The genotoxic and nephrotoxic mycotoxin Ochratoxin A (OTA) has also been reported to have adverse effects on oocyte maturation and embryo development. Previous studies on the effects of OTA on female fertility have used micromolar concentrations, but no information is available to date on effects in a more relevant nanomolar range. This study used a juvenile sheep model to evaluate the effects of oocyte exposure to low levels of OTA on maturation, fertilization, and embryo development. Further, it was investigated whether different mechanisms of action of OTA could be responsible for varying toxic effects at different levels of exposure. Cumulus-oocyte-complexes (COCs) were exposed to 10 µmol/L-0.1 nmol/L OTA during in vitro maturation and evaluated for cumulus viability, oocyte maturation, and bioenergetic/oxidative status. COCs were subjected to in vitro fertilization, embryo culture, and embryo quality assessment via morphology, viability, bioenergetic/oxidative status, and time-lapse monitoring. At micromolar concentrations, OTA induced cytotoxic effects, by reducing cumulus expansion and oocyte maturation. OTA altered temporospatial dynamics of zygote pronuclear formation and embryo morphokinetics. Blastocysts, even morphologically normal, were found to undergo collapse events, which were probably related to boosted blastocyst mitochondrial activity. At nanomolar concentrations, OTA did not affect COC morpho-functional parameters, but impaired oocyte ability to prevent polyspermy and increased blastocyst apoptosis. In conclusion, in the female germ cell, cytotoxic nonspecific effects characterize OTA-induced toxicity at high exposure levels, whereas fine tuning-mode effects, not associated with altered cell viability and integrity, characterize OTA toxic action at low levels.


Subject(s)
Cumulus Cells/drug effects , Embryonic Development/drug effects , Ochratoxins/pharmacology , Oocytes/drug effects , Oocytes/growth & development , Age Factors , Animals , Apoptosis/drug effects , Female , Models, Animal , Sheep
20.
PLoS One ; 15(9): e0238812, 2020.
Article in English | MEDLINE | ID: mdl-32915922

ABSTRACT

Three-dimensional in vitro maturation (3D IVM) is a promising approach to improve IVM efficiency as it could prevent cumulus-oocyte complex (COC) flattening and preserve its structural and functional integrity. Methods reported to date have low reproducibility and validation studies are limited. In this study, a bioprinting based production process for generating microbeads containing a COC (COC-microbeads) was optimized and its validity tested in a large animal model (sheep). Alginate microbeads were produced and characterized for size, shape and stability under culture conditions. COC encapsulation had high efficiency and reproducibility and cumulus integrity was preserved. COC-microbeads underwent IVM, with COCs cultured in standard 2D IVM as controls. After IVM, oocytes were analyzed for nuclear chromatin configuration, bioenergetic/oxidative status and transcriptional activity of genes biomarker of mitochondrial activity (TFAM, ATP6, ATP8) and oocyte developmental competence (KHDC3, NLRP5, OOEP and TLE6). The 3D system supported oocyte nuclear maturation more efficiently than the 2D control (P<0.05). Ooplasmic mitochondrial activity and reactive oxygen species (ROS) generation ability were increased (P<0.05). Up-regulation of TFAM, ATP6 and ATP8 and down-regulation of KHDC3, NLRP5 expression were observed in 3D IVM. In conclusion, the new bioprinting method for producing COC-microbeads has high reproducibility and efficiency. Moreover, 3D IVM improves oocyte nuclear maturation and relevant parameters of oocyte cytoplasmic maturation and could be used for clinical and toxicological applications.


Subject(s)
Bioprinting , Cumulus Cells/cytology , In Vitro Oocyte Maturation Techniques/methods , Oocytes/cytology , Animals , Automation , Capsules , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...