Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Cardiothorac Imaging ; 5(2): e220107, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124636

ABSTRACT

Purpose: To assess the long-term prognostic value of a machine learning (ML) approach in time-to-event analyses incorporating coronary CT angiography (CCTA)-derived and clinical parameters in patients with suspected coronary artery disease. Materials and Methods: The retrospective analysis included patients with suspected coronary artery disease who underwent CCTA between October 2004 and December 2017. Major adverse cardiovascular events were defined as the composite of all-cause death, myocardial infarction, unstable angina, or late revascularization (>90 days after index scan). Clinical and CCTA-derived parameters were assessed as predictors of major adverse cardiovascular events and incorporated into two models: a Cox proportional hazards model with recursive feature elimination and an ML model based on random survival forests. Both models were trained and validated by employing repeated nested cross-validation. Harrell concordance index (C-index) was used to assess the predictive power. Results: A total of 5457 patients (mean age, 61 years ± 11 [SD]; 3648 male patients) were evaluated. The predictive power of the ML model (C-index, 0.74; 95% CI: 0.71, 0.76) was significantly higher than the Cox model (C-index, 0.71; 95% CI: 0.68, 0.74; P = .02). The ML model also outperformed the segment stenosis score (C-index, 0.69; 95% CI: 0.66, 0.72; P < .001), which was the best performing CCTA-derived parameter, and patient age (C-index, 0.66; 95% CI: 0.63, 0.69; P < .001), the best performing clinical parameter. Conclusion: An ML model for time-to-event analysis based on random survival forests had higher performance in predicting major adverse cardiovascular events compared with established clinical or CCTA-derived metrics and a conventional Cox model.Keywords: Machine Learning, CT Angiography, Cardiac, Arteries, Heart, Arteriosclerosis, Coronary Artery DiseaseSupplemental material is available for this article.© RSNA, 2023.

2.
Int J Cardiovasc Imaging ; 39(6): 1209-1216, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37010650

ABSTRACT

To assess the prognostic value of convolutional neural networks (CNN) on coronary computed tomography angiography (CCTA) in comparison to conventional computed tomography (CT) reporting and clinical risk scores. 5468 patients who underwent CCTA with suspected coronary artery disease (CAD) were included. Primary endpoint was defined as a composite of all-cause death, myocardial infarction, unstable angina or late revascularization (> 90 days after CCTA). Early revascularization was additionally included as a training endpoint for the CNN algorithm. Cardiovascular risk stratification was based on Morise score and the extent of CAD (eoCAD) as assessed on CCTA. Semiautomatic post-processing was performed for vessel delineation and annotation of calcified and non-calcified plaque areas. Using a two-step training of a DenseNet-121 CNN the entire network was trained with the training endpoint, followed by training the feature layer with the primary endpoint. During a median follow-up of 7.2 years, the primary endpoint occurred in 334 patients. CNN showed an AUC of 0.631 ± 0.015 for prediction of the combined primary endpoint, while combining it with conventional CT and clinical risk scores showed an improvement of AUC from 0.646 ± 0.014 (based on eoCAD only) to 0.680 ± 0.015 (p < 0.0001) and from 0.619 ± 0.0149 (based on Morise Score only) to 0.6812 ± 0.0145 (p < 0.0001), respectively. In a stepwise model including all prediction methods, it was found an AUC of 0.680 ± 0.0148. CNN analysis showed to improve conventional CCTA-derived and clinical risk stratification when evaluating CCTA of patients with suspected CAD.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Computed Tomography Angiography , Coronary Angiography/methods , Predictive Value of Tests , Tomography, X-Ray Computed/methods , Prognosis , Risk Assessment , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...