Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 046402, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16711934

ABSTRACT

We present experimental results on fast-electron energy deposition into solid targets in ultrahigh intensity laser-matter interaction. X-ray K alpha emission spectroscopy with absolute photon counting served to diagnose fast-electron propagation in multilayered targets. Target heating was measured from ionization-shifted K alpha emission. Data show a 200 microm fast-electron range in solid Al. The relative intensities of spectrally shifted Al K alpha lines imply a mean temperature of a few tens of eV up to a 100 microm depth. Experimental results suggest refluxing of the electron beam at target rear side. They were compared with the predictions of both a collisional Monte Carlo and a collisional-electromagnetic, particle-fluid transport code. The validity of the code modeling of heating in such highly transient conditions is discussed.

2.
Phys Rev Lett ; 94(5): 055004, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783656

ABSTRACT

We study the propagation of fast electrons in a gas at different densities. A large relativistic electron current is produced by focusing a short-pulse ultrahigh-intensity laser on a metallic target. It then propagates in a gas jet placed behind the foil. Shadowgraphy in the gas shows an electron cloud moving at sub-relativistic average velocities. The experiment shows (i) the essential role of the density of background material for allowing propagation of fast electrons, (ii) the importance of the ionization phase which produces free electrons available for the return current, and (iii) the effect of electrostatic fields on fast-electron propagation.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 055402, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600682

ABSTRACT

We report one of the first measurements of induced heating due to the transport of a fast electron beam generated by an ultrashort pulse laser interaction with solid targets. Rear-side optical reflectivity and emissivity have been used as diagnostics for the size and temperature of the heated zone. A narrow spot has been observed of the order of the laser focus size. Values up to approximately 10 eV at the target back surface were inferred from the experimental data and compared with the predictions of a hybrid collisional-electromagnetic transport simulation.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 2): 066414, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15244752

ABSTRACT

Electron transport within solid targets, irradiated by a high-intensity short-pulse laser, has been measured by imaging K(alpha) radiation from high- Z layers (Cu, Ti) buried in low- Z (CH, Al) foils. Although the laser spot is approximately 10 microm [full width at half maximum (FWHM)], the electron beam spreads to > or =70 microm FWHM within <20 microm of penetration into an Al target then, at depths >100 microm, diverges with a 40 degree spreading angle. Monte Carlo and analytic models are compared to our data. We find that a Monte Carlo model with a heuristic model for the electron injection gives a reasonable fit with our data.

5.
Phys Rev Lett ; 91(10): 105001, 2003 Sep 05.
Article in English | MEDLINE | ID: mdl-14525484

ABSTRACT

The second harmonic of the laser light (2omega(0)) is observed on the rear side of thick solid targets irradiated by a laser beam at relativistic intensities. This emission is explained by the acceleration by the laser pulse in front of the target of short bunches of electrons separated by the period (or half the period) of the laser light. When reaching the rear side of the target, these electron bunches emit coherent transition radiation at 2omega(0). The observations indicate that, in our conditions, the minimum fraction of the laser energy transferred to these electron bunches is of the order of 1%.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 2): 066409, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12188837

ABSTRACT

The propagation of relativistic electrons in foam and solid density targets has been studied by means of K-alpha spectroscopy. Experimental results point out the role of self-generated electric fields in propagation and the role of heating of matter induced by the passage of fast electrons. A simple analytical formulation has been given and Spitzer conductivity has been shown to be fairly compatible with experimental results.

7.
Phys Rev Lett ; 89(2): 025001, 2002 Jul 08.
Article in English | MEDLINE | ID: mdl-12096998

ABSTRACT

We report on rear-side optical self-emission results from ultraintense laser pulse interactions with solid targets. A prompt emission associated with a narrow electron jet has been observed up to aluminum target thicknesses of 400 microm with a typical spreading half-angle of 17 degrees. The quantitative results on the emitted energy are consistent with models where the optical emission is due to transition radiation of electrons reaching the back surface of the target or due to a synchrotron-type radiation of electrons pulled back to the target. These models associated with transport simulation results give an indication of a temperature of a few hundred keV for the fast-electron population.

8.
Article in English | MEDLINE | ID: mdl-11102017

ABSTRACT

Fast electron generation and propagation were studied in the interaction of a green laser with solids. The experiment, carried out with the LULI TW laser (350 fs, 15 J), used K(alpha) emission from buried fluorescent layers to measure electron transport. Results for conductors (Al) and insulators (plastic) are compared with simulations: in plastic, inhibition in the propagation of fast electrons is observed, due to electric fields which become the dominant factor in electron transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...