Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 923: 171466, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447718

ABSTRACT

A comprehensive chemical characterization of fine particulate matter (PM2.5) was conducted at an urban site in one of the most densely populated cities of Vietnam, Hanoi. Chemical analysis of a series of 57 daily PM2.5 samples obtained in 2019-2020 included the quantification of a detailed set of chemical tracers as well as the oxidative potential (OP), which estimates the ability of PM to catalyze reactive oxygen species (ROS) generation in vivo as an initial step of health effects due to oxidative stress. The PM2.5 concentrations ranged from 8.3 to 148 µg m-3, with an annual average of 40.2 ± 26.3 µg m-3 (from September 2019 to December 2020). Our results obtained by applying the Positive Matrix Factorization (PMF) source-receptor apportionment model showed the contribution of nine PM2.5 sources. The main anthropogenic sources contributing to the PM mass concentrations were heavy fuel oil (HFO) combustion (25.3 %), biomass burning (20 %), primary traffic (7.6 %) and long-range transport aerosols (10.6 %). The OP activities were evaluated for the first time in an urban site in Vietnam. The average OPv levels obtained in our study were 3.9 ± 2.4 and 4.5 ± 3.2 nmol min-1 m-3 for OPDTT and OPAA, respectively. We assessed the contribution to OPDTT and OPAA of each PM2.5 source by applying multilinear regression models. It shows that the sources associated with human activities (HFO combustion, biomass burning and primary traffic) are the sources driving OP exposure, suggesting that they should be the first sources to be controlled in future mitigation strategies. This study gives for the first time an extensive and long-term chemical characterization of PM2.5, providing also a link between emission sources, ambient concentrations and exposure to air pollution at an urban site in Hanoi, Vietnam.

3.
Sci Total Environ ; 901: 165802, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37524184

ABSTRACT

Here we investigated the bioavailability of black carbon (BC)-derived dissolved organic matter (DOM) for a natural mixed community of marine heterotrophic prokaryotes. We ran an in vitro biodegradation experiment that took place over 3 months and exposed a community of organisms collected in the northwestern Mediterranean Sea (Bay of Marseille, France) to three different soluble fractions of BC prepared in the laboratory from various fossil fuel combustion particulates: standard diesel (DREF), oxidized diesel (DREF-OX), and natural samples of ship soot (DSHIP). Over the course of the three months, we observed significant decreases in the concentrations of dissolved organic carbon (DOC; from 9 to 21 %), dissolved BC (DBC; from 22 to 38 %) and dissolved polycyclic aromatic hydrocarbons (d-PAH; from 24 to 64 %) along with variability in the growth dynamics and activity of the heterotrophic prokaryotic community. The heterotrophic prokaryotic community exposed to DREF-OX treatment showed the highest values of respiration and production and the highest cell abundance, associated with the highest decrease in DOC (21 %) and d-PAH (64 %) concentrations. In the DREF and DSHIP treatments, prokaryotic activity was oriented towards anabolism. DREF treatment led to the highest decrease in DBC concentration (38 %). DSHIP treatment, which presented a substantially different d-PAH and dissolved metals content to the other two treatments, showed the lowest decreases in DOC, DBC and d-PAH concentrations, as well as the lowest prokaryotic activity and biomasses. Our results indicate that BC-derived DOM, including the most condensed fraction of this material, is partly bioavailable and therefore likely to be assimilated by marine prokaryotes. The origin of BC/soot deposited at the ocean surface turns out to be a key parameter that dictates the efficiency of biodegradation of its dissolved fraction by heterotrophic prokaryotes.


Subject(s)
Dissolved Organic Matter , Polycyclic Aromatic Hydrocarbons , Soot , Biological Availability , Polycyclic Aromatic Hydrocarbons/analysis , Carbon
4.
Mar Pollut Bull ; 189: 114765, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36898272

ABSTRACT

This paper looks at experiential feedback and the technical and scientific challenges tied to the MERITE-HIPPOCAMPE cruise that took place in the Mediterranean Sea in spring 2019. This cruise proposes an innovative approach to investigate the accumulation and transfer of inorganic and organic contaminants within the planktonic food webs. We present detailed information on how the cruise worked, including 1) the cruise track and sampling stations, 2) the overall strategy, based mainly on the collection of plankton, suspended particles and water at the deep chlorophyll maximum, and the separation of these particles and planktonic organisms into various size fractions, as well as the collection of atmospheric deposition, 3) the operations performed and material used at each station, and 4) the sequence of operations and main parameters analysed. The paper also provides the main environmental conditions that were prevailing during the campaign. Lastly, we present the types of articles produced based on work completed by the cruise that are part of this special issue.


Subject(s)
Food Chain , Plankton , Mediterranean Sea , Seasons , Oceanography
5.
Eur J Nutr ; 61(6): 2979-2991, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35318492

ABSTRACT

PURPOSE: For decades, consistent associations between breastfeeding and children's neurodevelopment have been attributed to breastmilk content in long-chain polyunsaturated fatty acids (LC-PUFAs). However, the beneficial effect of LC-PUFA enrichment of infant formula on neurodevelopment remains controversial. This study examined the association of LC-PUFA enrichment of infant formulas with neurodevelopment up to age 3.5 years. METHODS: Analyses were based on 9372 children from the French nationwide ELFE birth cohort. Monthly from 2 to 10 months, parents declared their infant's feeding mode, including breastfeeding and the name of the infant formula, which allowed for identifying formulas enriched in arachidonic (ARA), eicosapentaenoic (EPA) and/or docosahexaenoic (DHA) acids. Neurodevelopment was assessed at age 1 and 3.5 years with the Child Development Inventory (CDI-1 and CDI-3.5); at 2 years with the MacArthur-Bates Communicative Development Inventories (MB-2); and at 3.5 years with the Picture Similarities subtest of the British Ability Scale (BAS-3.5). Associations were assessed by linear regression adjusted for any breastfeeding duration and main confounding factors, including socioeconomic characteristics. RESULTS: One-third of formula-fed infants consumed LC-PUFA-enriched formulas. Most of these formulas were enriched in both DHA and ARA, and about 10% of infants consumed formula further enriched in EPA. LC-PUFA enrichment of infant formula was not associated with neurodevelopmental scores at age 1 (CDI-1, - 0.16 [- 0.39, 0.07]), age 2 (MB-2, 0.78 [- 0.33, 1.89]), or age 3.5 (CDI-3.5, - 0.05 [- 0.27, 0.17]; BAS-3.5, - 0.93 [- 2.85, 0.98]). CONCLUSION: In the ELFE study, LC-PUFA enrichment of infant formula was not associated with neurodevelopmental scores up to 3.5 years.


Subject(s)
Docosahexaenoic Acids , Fatty Acids, Unsaturated , Birth Cohort , Child , Child, Preschool , Fatty Acids , Female , Humans , Infant , Infant Formula , Milk, Human
6.
Sci Rep ; 11(1): 11863, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103551

ABSTRACT

Studies in children have reported associations of screen time and background TV on language skills as measured by their parents. However, few large, longitudinal studies have examined language skills assessed by trained psychologists, which is less prone to social desirability. We assessed screen time and exposure to TV during family meals at ages 2, 3 and 5-6 years in 1562 children from the French EDEN cohort. Language skills were evaluated by parents at 2 years (Communicative Development Inventory, CDI) and by trained psychologists at 3 (NEPSY and ELOLA batteries) and 5-6 years (verbal IQ). Cross-sectional and longitudinal associations were assessed by linear regression adjusted for important confounders. Overall, daily screen time was not associated with language scores, except in cross-sectional at age 2 years, where higher CDI scores were observed for intermediate screen time. Exposure to TV during family meals was consistently associated with lower language scores: TV always on (vs never) at age 2 years was associated with lower verbal IQ (- 3.2 [95% IC: - 6.0, - 0.3] points), independent of daily screen time and baseline language score. In conclusion, public health policies should better account for the context of screen watching, not only its amount.


Subject(s)
Language Development , Mothers , Screen Time , Adult , Child , Child, Preschool , Cohort Studies , Female , Humans , Intelligence , Male
7.
Neurobiol Dis ; 134: 104644, 2020 02.
Article in English | MEDLINE | ID: mdl-31669735

ABSTRACT

Angiotensin II type 1 receptor antagonists like losartan have been found to lower the incidence and progression to Alzheimer's disease (AD), as well as rescue cognitive and cerebrovascular deficits in AD mouse models. We previously found that co-administration of an angiotensin IV (AngIV) receptor (AT4R) antagonist prevented losartan's benefits, identifying AT4Rs as a possible target to counter AD pathogenesis. Therein, we investigated whether directly targeting AT4Rs could counter AD pathogenesis in a well-characterized mouse model of AD. Wild-type and human amyloid precursor protein (APP) transgenic (J20 line) mice (4.5 months old) received vehicle or AngIV (~1.3 nmol/day, 1 month) intracerebroventricularly via osmotic minipumps. AngIV restored short-term memory, spatial learning and memory in APP mice. AngIV normalized hippocampal AT4R levels, increased hippocampal subgranular zone cellular proliferation and dendritic arborization, and reduced oxidative stress. AngIV rescued whisker-evoked neurovascular coupling, endothelial- and smooth muscle cell-mediated cerebral vasodilatory responses, and cerebrovascular nitric oxide bioavailability. AngIV did not alter blood pressure, neuroinflammation or amyloid-ß (Aß) pathology. These preclinical findings identify AT4R as a promising target to counter Aß-related cognitive and cerebrovascular deficits in AD.


Subject(s)
Alzheimer Disease/pathology , Angiotensin II/analogs & derivatives , Hippocampus/drug effects , Memory/drug effects , Neurovascular Coupling/drug effects , Amyloid beta-Protein Precursor/genetics , Angiotensin II/pharmacology , Animals , Disease Models, Animal , Humans , Infusions, Intraventricular , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...