Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharm Biol ; 53(1): 133-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339603

ABSTRACT

CONTEXT: Nectandra (Lauraceae) species have been used in folk medicine as an antidiarrheal, analgesic, antifungal, etc., and have many pharmacological proprieties. OBJECTIVE: Investigation of the chemical composition and cytotoxicity of essential oil from Nectandra leucantha Nees & Mart. leaves. This is the first study involving N. leucantha reported in the literature. MATERIAL AND METHODS: The essential oil of N. leucantha leaves was obtained by hydrodistillation. Its chemical composition was determined using a combination of GC/FID, GC/MS, and determination of Kovats index (KI). In vitro cytotoxic activity was evaluated against six cancer cell lines - murine melanoma (B16F10-Nex2), human glioblastome (U-87), human cervical carcinoma (HeLa), human colon carcinoma (HCT), human breast adenocarcinoma (MCF7), and human cervical tumor (Siha) as well as against one non-tumorigenic cell line - human foreskin fibroblast (HFF). RESULTS: Thirty-three compounds were identified primarily sesquiterpenes (81.41%), the main compounds being bicyclogermacrene (28.44%), germacrene A (7.34%), spathulenol (5.82%), and globulol (5.25%). Furthermore, monoterpenes were also found in the analyzed oil (12.84%), predominantly α- and ß-pinenes (6.59 and 4.57%, respectively). The crude essential oil displayed significant cytotoxic activity against B16F10-Nex2 (IC50 33 ± 1 µg/mL) and U87 (IC50 75.95 ± 0.03 µg/mL) and HeLa (IC50 60 ± 12 µg/mL) cell lines. The main identified compound, bicyclogermacrene, displayed IC50 ranging from 3.1 ± 0.2 to 21 ± 6 µg/mL. DISCUSSION AND CONCLUSION: The results indicate that the crude oils from leaves of N. leucantha displayed cytotoxic activity being bicyclogermacrene, the main compound identified in the crude oil responsible, at least in part, for this potential.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Lauraceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/isolation & purification , Bridged Bicyclo Compounds/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Mice , Molecular Structure , Oils, Volatile/isolation & purification , Plant Leaves/chemistry , Plant Oils/isolation & purification , Sesquiterpenes, Germacrane/chemistry , Sesquiterpenes, Germacrane/isolation & purification , Sesquiterpenes, Germacrane/pharmacology
2.
Planta Med ; 80(15): 1310-4, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25177846

ABSTRACT

Bioactivity-guided fractionation of the MeOH extract from the leaves of Alchornea glandulosa afforded a new guanidine alkaloid named alchornedine, as well as two other inactive derivatives (pteroginine and pteroginidine). The structure of alchornedine, which shows a very rare ring system, was elucidated based on NMR, IR, and MS spectral analyses. This compound displayed antiprotozoal activity against Trypanosoma cruzi (Y strain). By using the MTT assay, the trypomastigotes showed an IC50 value of 93 µg/mL (443 µM), a similar effectiveness to the standard drug benznidazole. Alchornedine also showed activity against the intracellular amastigotes, with an IC50 value of 27 µg/mL (129 µM). Using benznidazole as a standard drug, this guanidine alkaloid was approximately 3-fold more effective against the intracellular form of T. cruzi. The mammalian cytotoxicity of alchornedine was verified against NCTC cells and demonstrated an IC50 of 50 µg/mL (237 µM), but this compound demonstrated a selective elimination of parasites inside macrophages without affecting the morphology of the host cells. Alchornedine was effective against both clinical forms of T. cruzi and could be used as a scaffold for future drug design studies against American trypanosomiasis.


Subject(s)
Euphorbiaceae/chemistry , Guanidines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Alkaloids/chemistry , Alkaloids/isolation & purification , Alkaloids/pharmacology , Animals , Cells, Cultured , Drug Evaluation, Preclinical , Guanidines/chemistry , Guanidines/isolation & purification , Inhibitory Concentration 50 , Macrophages/drug effects , Macrophages/parasitology , Magnetic Resonance Spectroscopy , Mice , Molecular Structure , Parasitic Sensitivity Tests , Trypanocidal Agents/chemistry
3.
Fitoterapia ; 97: 28-33, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24862066

ABSTRACT

Bioactivity-guided fractionation of EtOH extract from the leaves of Piper aduncum L. (Piperaceae) afforded a new dihydrochalcone, named adunchalcone. Its structure was elucidated on the basis of their spectroscopic data, primarily NMR and MS. Adunchalcone was evaluated against promastigote forms of Leishmania (L.) amazonensis, L. (V.) braziliensis, L. (V.) shawi, and L. (L.) chagasi and displayed 50% effective concentrations (EC50) of 11.03, 26.70, and 11.26 µM, as well as selective indexes of 4.86, 2.01, 4.76 and 0.50, respectively. This compound was also tested against intracellular forms of L. (L.) amazonensis, displaying weak activity, in comparison to reference drug amphotericin B. However, despite reduced effect of adunchalcone against amastigotes of L. (L.) amazonensis, this work opens the perspective to use this particular molecule as a scaffold for the design of novel and selective drug candidates for neglected diseases, mainly leishmaniasis.


Subject(s)
Antiparasitic Agents/isolation & purification , Chalcones/isolation & purification , Hydroxybenzoates/isolation & purification , Leishmania/drug effects , Piper/chemistry , Animals , Antiparasitic Agents/chemistry , Antiparasitic Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Mice, Inbred BALB C , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...