Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 31(5): 1275-1292, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37025062

ABSTRACT

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominantly inherited ataxia worldwide. It is caused by an over-repetition of the trinucleotide CAG within the ATXN3 gene, which confers toxic properties to ataxin-3 (ATXN3) species. RNA interference technology has shown promising therapeutic outcomes but still lacks a non-invasive delivery method to the brain. Extracellular vesicles (EVs) emerged as promising delivery vehicles due to their capacity to deliver small nucleic acids, such as microRNAs (miRNAs). miRNAs were found to be enriched into EVs due to specific signal motifs designated as ExoMotifs. In this study, we aimed at investigating whether ExoMotifs would promote the packaging of artificial miRNAs into EVs to be used as non-invasive therapeutic delivery vehicles to treat MJD/SCA3. We found that miRNA-based silencing sequences, associated with ExoMotif GGAG and ribonucleoprotein A2B1 (hnRNPA2B1), retained the capacity to silence mutant ATXN3 (mutATXN3) and were 3-fold enriched into EVs. Bioengineered EVs containing the neuronal targeting peptide RVG on the surface significantly decreased mutATXN3 mRNA in primary cerebellar neurons from MJD YAC 84.2 and in a novel dual-luciferase MJD mouse model upon daily intranasal administration. Altogether, these findings indicate that bioengineered EVs carrying miRNA-based silencing sequences are a promising delivery vehicle for brain therapy.


Subject(s)
Machado-Joseph Disease , MicroRNAs , Mice , Animals , Machado-Joseph Disease/genetics , Machado-Joseph Disease/therapy , MicroRNAs/genetics , Ataxin-3/genetics , RNA Interference , Peptides/genetics
2.
Brain ; 143(2): 407-429, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31738395

ABSTRACT

Polyglutamine (polyQ) disorders are a group of nine neurodegenerative diseases that share a common genetic cause, which is an expansion of CAG repeats in the coding region of the causative genes that are otherwise unrelated. The trinucleotide expansion encodes for an expanded polyQ tract in the respective proteins, resulting in toxic gain-of-function and eventually in neurodegeneration. Currently, no disease-modifying therapies are available for this group of disorders. Nevertheless, given their monogenic nature, polyQ disorders are ideal candidates for therapies that target specifically the gene transcripts. Antisense oligonucleotides (ASOs) have been under intense investigation over recent years as gene silencing tools. ASOs are small synthetic single-stranded chains of nucleic acids that target specific RNA transcripts through several mechanisms. ASOs can reduce the levels of mutant proteins by breaking down the targeted transcript, inhibit mRNA translation or alter the maturation of the pre-mRNA via splicing correction. Over the years, chemical optimization of ASO molecules has allowed significant improvement of their pharmacological properties, which has in turn made this class of therapeutics a very promising strategy to treat a variety of neurodegenerative diseases. Indeed, preclinical and clinical strategies have been developed in recent years for some polyQ disorders using ASO therapeutics. The success of ASOs in several animal models, as well as encouraging results in the clinic for Huntington's disease, points towards a promising future regarding the application of ASO-based therapies for polyQ disorders in humans, offering new opportunities to address unmet medical needs for this class of disorders. This review aims to present a brief overview of key chemical modifications, mechanisms of action and routes of administration that have been described for ASO-based therapies. Moreover, it presents a review of the most recent and relevant preclinical and clinical trials that have tested ASO therapeutics in polyQ disorders.


Subject(s)
Huntingtin Protein/drug effects , Huntington Disease/drug therapy , Neurodegenerative Diseases/drug therapy , Oligonucleotides, Antisense/pharmacology , Peptides/genetics , Animals , Humans , Huntingtin Protein/genetics , Huntington Disease/genetics , Neurodegenerative Diseases/genetics , Trinucleotide Repeat Expansion/genetics
3.
CNS Neurosci Ther ; 24(5): 404-411, 2018 05.
Article in English | MEDLINE | ID: mdl-29318784

ABSTRACT

BACKGROUND & AIMS: Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an autosomal dominantly inherited neurodegenerative disorder and the most common form of SCA worldwide. It is caused by the expansion of a polyglutamine (polyQ) tract in the ataxin-3 protein. Nuclear localization of the affected protein is a key event in the pathology of SCA3 via affecting nuclear organization, transcriptional dysfunction, and seeding aggregations, finally causing neurodegeneration and cell death. So far, there is no effective therapy to prevent or slow the progression of SCA3. METHODS: In this study, we explored the effect of divalproex sodium as an HDACi in SCA3 cell models and explored how divalproex sodium interferes with pathogenetic processes causing SCA3. RESULTS: We found that divalproex sodium rescues the hypoacetylation levels of histone H3 and attenuates cellular cytotoxicity induced by expanded ataxin-3 partly via preventing nuclear transport of ataxin-3 (particularly heat shock-dependent). CONCLUSION: Our study provides novel insights into the mechanisms of action of divalproex sodium as a possible treatment for SCA3, beyond the known regulation of transcription.


Subject(s)
Active Transport, Cell Nucleus/drug effects , Ataxin-3/metabolism , Neuroprotective Agents/pharmacology , Repressor Proteins/metabolism , Valproic Acid/pharmacology , Acetylation/drug effects , Animals , CHO Cells , Cell Survival/drug effects , Cell Survival/physiology , Cricetulus , HEK293 Cells , Heat-Shock Response/drug effects , Heat-Shock Response/physiology , Histones/metabolism , Humans , Protein Aggregates/drug effects
4.
Antonie Van Leeuwenhoek ; 98(3): 331-42, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20422287

ABSTRACT

Yeasts are common inhabitants of different types of aquatic habitats, including marine and estuarine waters and rivers. Although numerous studies have surveyed yeast occurrence in these habitats, the identification of autochthonous populations has been problematic because several yeast species seem to be very versatile and therefore mere presence is not sufficient to establish an ecological association. In the present study we investigated the dynamics of the yeast community in the Tagus river estuary (Portugal) by combining a microbiological study involving isolation, quantification, and molecular identification of dominant yeast populations with the analysis of hydrological and hydrographical data. We set out to test the hypothesis of the multiple origins of estuarine yeast populations in a transect of the Tagus estuary and we postulate four possible sources: open sea, terrestrial, gastrointestinal and the estuary itself in the case of populations that have become resident. Candida parapsilosis and Pichia guilliermondii were correlated with Escherichia coli, which indicated an intestinal origin. Other cream-colored yeasts like Debaryomyces hansenii and Candida zeylanoides had similar dynamics, but no association with E. coli and quite distinct ecological preferences. They might represent a group of resident estuarine populations whose primary origin is diverse and can include marine, terrestrial, and gastrointestinal habitats. Another major yeast population was represented by Rhodotorula mucilaginosa. The cosmopolitan nature of that species and its moderate association with E. coli point to terrestrial sources as primary habitats.


Subject(s)
Ecosystem , Fresh Water/microbiology , Rivers/microbiology , Seawater/microbiology , Water Microbiology , Yeasts/classification , Yeasts/isolation & purification , Ascomycota/classification , Ascomycota/isolation & purification , Basidiomycota/classification , Basidiomycota/isolation & purification , Biodiversity , Candida/classification , Candida/isolation & purification , Colony Count, Microbial , DNA Fingerprinting , DNA, Fungal/analysis , DNA, Ribosomal/analysis , Escherichia coli/isolation & purification , Oceans and Seas , Pichia/classification , Pichia/isolation & purification , Polymerase Chain Reaction , Portugal , Rhodotorula/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...