Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Chem ; 62(8): 583-598, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38557999

ABSTRACT

Sesquiterpene lactones (SL) represent a class of secondary metabolites found in the Asteraceae family, notable for their unique structures. The SL α-santonin (1) and its derivatives are worthy of mention due to their diverse biological properties. Additionally, 4H-chromenes and 4H-chromones are appealing frameworks holding the capability to be used as structural motifs for new drugs. Furthermore, unambiguous structural elucidation is crucial for developing novel compounds for diverse applications. In this context, it is common to find in the literature molecules erroneously assigned. Therefore, the use of quantum mechanical calculations to simulate NMR chemical shifts has emerged as a valuable strategy. In this work, we conceived the synthesis of two halogenated 4H-chromenediones derived from photosantonic acid (2), a photoproduct arising from irradiation of α-santonin (1) in the ultraviolet region. The structure of the chlorinated and brominated products was determined by NMR analysis, with the aid of quantum mechanical calculations at the B3LYP/6-311 + G(2d,p)//M062x/6-31 + G(d,p) level of theory. All analyses were in agreement and led to the assignment of the brominated 4H-chromene-2,7-dione as (3S,3aS,5aR,9bS)-5a-(2-bromopropan-2-yl)-3-methyl-3,3a,5,5a,8,9b-hexahydro-4H-furo[2,3-f]chromene-2,7-dione (11b) and of the chlorinated 4H-chromene-2,7-dione as (3S,3aS,5aR,9bS)-5a-(2-chloropropan-2-yl)-3-methyl-3,3a,5,5a,8,9b-hexahydro-4H-furo[2,3-f]chromene-2,7-dione (12b). The diastereoselectivities of the reactions were explained based on products and intermediates formation energy calculated using B3LYP/6-31 + G(d,p) as the level of theory. Structures 11b and 12b were identified as the thermodynamic and kinetic products of the reaction among all candidates. Consequently, the strategy utilized in this study is robust and successfully illustrates the use of quantum mechanical calculations in the structural elucidation of new compounds with potential applications as novel drugs or products.

2.
Photochem Photobiol ; 99(2): 732-741, 2023 03.
Article in English | MEDLINE | ID: mdl-35944220

ABSTRACT

Hydroxypyranoflavylium (HPF) cations are synthetic analogs possessing the same basic chromophore as the pyranoanthocyanins that form during the maturation of red wine. HPF cations absorb strongly in the visible spectral region, and most are fluorescent, triplet-sensitize singlet oxygen formation in solution and are strong photooxidants, properties that are desirable in a sensitizer for photodynamic therapy (PDT). The results of this study demonstrate that several simple HPF dyes can indeed function as PDT sensitizers. Of the eight HPF cations investigated in this work, four were phototoxic to a human cervical adenocarcinoma cell line (HeLa) at the 1-10 µmol dm-3 level, while only one of the eight compounds showed noticeable cytotoxicity in the dark. Neither a Type I nor a Type II mechanism can adequately rationalize the differences in phototoxicity of the compounds. Colocalization experiments with the most phototoxic compound demonstrated the affinity of the dye for both the mitochondria and lysosomes of HeLa cells. The fact that relatively modest structural differences, e.g., the exchange of an electron-donating substituent for an electron-withdrawing substituent, can cause profound differences in the phototoxicity, together with the relatively facile synthesis of substituted HPF cations, makes them interesting candidates for further evaluation as PDT sensitizers.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Humans , Photosensitizing Agents/chemistry , Photochemotherapy/methods , HeLa Cells , Coloring Agents/chemistry , Singlet Oxygen/metabolism
3.
Magn Reson Chem ; 60(1): 139-147, 2022 01.
Article in English | MEDLINE | ID: mdl-34265119

ABSTRACT

Sesquiterpene lactones are found in plants of Asteraceae family, and endoperoxides are known for their antimalarial activity. Structural elucidation is a relevant aspect; however, it is not uncommon to find incorrect or incomplete structural assignments in the literature. Calculations based in quantum mechanics are frequently used to compute 1 H and 13 C NMR chemical shifts, and after comparing with the experimental data, the correct structure is established from diverse candidates. Targeting the synthesis of bioactive compounds, we envisaged the synthesis of a novel endoperoxide from the natural sesquiterpene lactone α-santonin (2). Photochemical transformation of α-santonin (2) to mazdasantonin (4) followed by photooxidation catalyzed by rose bengal afforded the novel endoperoxide 5. This new endoperoxide contains five stereogenic centers and is analogous to the antimalarial agent artemisinin (1). The relative configuration of the stereogenic centers of the endoperoxide were established by nuclear magnetic resonance (NMR) analyses and confirmed by theoretical calculations. All approaches were in complete agreement, and the structure of mazdasantonin endoperoxide was established as (3S,3aS,5aS,8R,9bS)-3,6,6-trimethyl-3,3a,4,5,8,9b-hexahydro-2H-5a,8-epidioxynaphtho[1,2-b]furan-2,7(6H)-dione.

SELECTION OF CITATIONS
SEARCH DETAIL
...