Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 161: 364-373, 2018 10.
Article in English | MEDLINE | ID: mdl-29902616

ABSTRACT

The Billings reservoir is the largest water-storage facility in the São Paulo Metropolitan Region, with only a small part of the reservoir used for water supply. Recently, the São Paulo Metropolitan Region has experienced the greatest water collapse ever recorded. Thus, the intensification of use of the Billings reservoir should be considered. The objective of this study was to evaluate the quality of the water from different areas of the Billings reservoir related to human consumption (water supply and fishing): Rio Pequeno, Rio Grande, and Bororé rivers. We performed microbiological and physical studies on one water sample collected at each of these sites. Adult zebrafish were exposed to such water samples and their behaviors were evaluated. Finally, we studied central glial fibrillary acidic protein (GFAP) expression, which is related to neuroinflammatory processes. Water samples from Rio Pequeno, Rio Grande, and Bororé presented microbiological contamination for Escherichia coli and heterotrophic bacteria. Water from the Rio Pequeno river induced both motor/exploratory impairments and anxiogenic-like behavior in zebrafish. Water from the Bororé river induced behaviors in zebrafish related to respiratory impairments (hypoxia) as well as higher alarm reaction. Zebrafish exposed to water from the Bororé also presented astrogliosis, which seems to have happened in detrimental of the high heterotrophic bacterial contamination. Rio Grande and Bororé water increased the lethality rates. Considering the present results of microbiological contaminants and behavior impairments, lethality, as well as astrogliosis in zebrafish, the water from Rio Pequeno, Rio Grande, and Bororé rivers should be considered unacceptable for human use in their untreated state. The Basic Sanitation Company of the State of Sao Paulo should consider adopting rigorous processes of microbiological water treatment. Authorization for fishing at Bororé river should be reconsidered.


Subject(s)
Behavior, Animal/drug effects , Glial Fibrillary Acidic Protein/metabolism , Rivers/microbiology , Water Microbiology , Water Supply/statistics & numerical data , Animals , Brazil , Environmental Monitoring , Humans , Water , Zebrafish
2.
PLoS One ; 12(1): e0169446, 2017.
Article in English | MEDLINE | ID: mdl-28056040

ABSTRACT

Recent studies have demonstrated the intimate relationship between depression and immune disturbances. Aware of the efficacy limits of existing antidepressant drugs and the potential anti-inflammatory properties of propentofylline, we sought to evaluate the use of propentofylline as a depression treatment. We used a rat model of depression induced by repetitive lipopolysaccharide (LPS) administrations. We have studied sickness behavior, by assessing daily body weight, open field behavior, and TNF-α plasmatic levels. Anxiety-like behavior (light-dark test), depressive-like behavior (forced swim test), plasmatic levels of the brain-derived neurotrophic factor (BDNF, depression biomarker), and central glial fibrillary acidic protein (GFAP) expression (an astrocyte biomarker) were also evaluated. LPS induced body weight loss, open field behavior impairments (decreased locomotion and rearing, and increased immobility), and increased TNF-α levels in rats, compared with control group. Thus, LPS induced sickness behavior. LPS also increased the immobility and reduced climbing in the forced swim test, when compared with the control group, i.e., LPS induced depressive-like behavior in rats. Propentofylline prevented sickness behavior after four days of consecutive treatment, as well as prevented the depressive-like behavior after five days of consecutive treatments. Propentofylline also prevented the increase in GFAP expression induced by LPS. Neither LPS nor propentofylline has influenced the anxiety and BDNF levels of rats. In conclusion, repetitive LPS administrations induced sickness behavior and depressive-like behavior in rats. Propentofylline prevented both sickness behavior and depressive-like behavior via neuroinflammatory pathway. The present findings may contribute to a better understanding and treatment of depression and associated diseases.


Subject(s)
Depression/drug therapy , Lipopolysaccharides/toxicity , Xanthines/therapeutic use , Animals , Antidepressive Agents , Anxiety/drug therapy , Behavior, Animal/drug effects , Body Weight/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder/drug therapy , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Illness Behavior/drug effects , Immunohistochemistry , Male , Photomicrography , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
3.
Life Sci ; 92(14-16): 852-8, 2013 May 02.
Article in English | MEDLINE | ID: mdl-23517778

ABSTRACT

AIMS: Environmental information received by a mother can induce a phenotype change in her offspring, commonly known as a maternal effect (trans-generational effect). The present work verified the effects of lipopolysaccharide (LPS), which mimics bacterial infection, on maternal care and on the activity of related brain areas in F1 offspring, i.e., female rats that were prenatally exposed to LPS. MAIN METHODS: Pregnant rats received 100µg/kg of LPS intraperitoneally on gestational day (GD) 9.5. Female offspring of the F1 generation were mated to naïve males and were evaluated during their lactation period for open field, maternal and aggressive behaviors. Striatal and hypothalamic dopamine and serotonin levels and turnover were also evaluated. Furthermore, astrocyte protein expression in the nucleus accumbens (NA) was analyzed in F1 females to assess LPS-induced neuroinflammation. KEY FINDINGS: Prenatal LPS did not change open field behavior but impaired both maternal and maternal aggressive behaviors in the F1 generation. LPS exposure also reduced both striatal levels of dopamine and serotonin and its metabolites, but induced no changes in NA astrocyte expression. SIGNIFICANCE: We suggested that the observed impairments in the F1 females were a consequence of a motivational change induced by prenatal LPS, as (1) no changes in motor activity were observed, (2) prenatal LPS-exposure was reported by our group to induce motivational impairments in males, and (3) the existence of a strong connection between striatal dopaminergic activity and motivation-oriented activities. The present findings strongly indicate a maternal effect for prenatal LPS, at least for the F1 generation.


Subject(s)
Behavior, Animal , Dopamine/metabolism , Maternal Behavior/psychology , Prenatal Exposure Delayed Effects/psychology , Serotonin/metabolism , Animals , Bacterial Infections/complications , Corpus Striatum/metabolism , Disease Models, Animal , Female , Hypothalamus/metabolism , Lipopolysaccharides/toxicity , Male , Motor Activity , Nucleus Accumbens/metabolism , Pregnancy , Pregnancy Complications, Infectious/physiopathology , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...