Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Magn Reson Med ; 87(2): 674-685, 2022 02.
Article in English | MEDLINE | ID: mdl-34498768

ABSTRACT

PURPOSE: Reduce expense and increase accessibility of MRI by eliminating pulsed field (B0 ) gradient hardware. METHODS: A radiofrequency imaging method is described that enables spatial encoding without B0 gradients. This method, herein referred to as frequency-modulated Rabi-encoded echoes (FREE), utilizes adiabatic full passage pulses and a gradient in the RF field (B1 ) to produce spatially dependent phase modulation, equivalent to conventional phase encoding. In this work, Cartesian phase encoding was accomplished using FREE in a multi-shot double spin-echo sequence. Theoretical analysis and computer simulations investigated the influence of resonance offset and B1 -gradient steepness and magnitude on reconstruction quality, which limit other radiofrequency imaging methodologies. Experimentally, FREE was compared to conventional phase-encoded MRI on human visual cortex using a simple surface transceiver coil. RESULTS: Image distortions occurred in FREE when using nonlinear B1 fields where the phase dependence becomes nonlinear, but with minimal change in signal intensity. Resonance offset effects were minimal for Larmor frequencies within the adiabatic full-passage pulse bandwidth. CONCLUSION: For the first time, FREE enabled slice-selective 2D imaging of the human brain without a B0 gradient in the y-direction. FREE achieved high resolution in regions where the B1 gradient was steepest, whereas images were distorted in regions where nonlinearity in the B1 gradient was significant. Given that FREE experiences no significant signal loss due to B1 nonlinearities and resonance offset, image distortions shown in this work might be corrected in the future based on B1 and B0 maps.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Brain/diagnostic imaging , Computer Simulation , Humans , Phantoms, Imaging
2.
Einstein (Sao Paulo) ; 10(1): 11-5, 2012.
Article in English | MEDLINE | ID: mdl-23045819

ABSTRACT

OBJECTIVE: The objective was to establish a pattern of tumor growth of the C6 model of glioblastoma multiform in Wistar rats via magnetic resonance imaging (MRI) for the subsequent verification of tumor volume reduction due to magnetic hyperthermia therapy. METHODS: Young male Wistar rats weighing between 250 and 300 g were used for the C6 model. After the rats were anesthetized (55 mg/ kg ketamine and 11 mg/kg xylazine), C6 lineage tumorigenic cells suspended in culture medium (10(5) cells in 10 microl) were stereotaxically injected into the right frontal cortex (bregma coordinates: 2.0 mm anteroposterior, 3.0 mm laterolateral, and 2.5 mm depth) of the rats using a Hamilton syringe. For the control group, the rats were injected with culture medium without cells. MRI scans were performed at 14, 21, and 28 d after the injection using a 2.0 T MRI scanner (Bruker BioSpec, Germany). The animals were anesthetized with 55 mg/kg ketamine and 11 mg/kg xylazine before being examined. Coronal multilayers were acquired using a standard spin echo sequence with the following parameters: repetition/echo time = 4.000 ms/67.1 ms, field of view = 3.50, matrix = 192, slice thickness = 0.4 mm, and slice separation = 0 mm. RESULTS: The MRI analysis enabled a clear visualization of the tumor mass, and it was possible to establish the tumor volume parameters on the various days that were examined. The volume at 14 d after induction was 13.7 +/- 2.5 mm3. On days 21 and 28, the tumor volumes were 31.7 +/- 6.5 mm3 and 122.1 +/- 11.8 mm3, respectively. CONCLUSION: These results demonstrated that it is possible to evaluate the C6 model tumor volume in rats, which will allow for the future implementation and verification of magnetic hyperthermia therapy.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , Hyperthermia, Induced/methods , Magnetic Field Therapy/methods , Magnetic Resonance Imaging , Animals , Brain Neoplasms/pathology , Cell Line, Tumor/transplantation , Frontal Lobe/pathology , Glioblastoma/pathology , Male , Rats , Rats, Wistar , Tumor Burden
4.
J Magn Reson ; 184(1): 176-83, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17056289

ABSTRACT

When the spin Hamiltonian is a linear function of the magnetic field intensity the resonance fields can be determined, in principle, by an eigenfield equation. In this report, we show a new technical approach to the resonance field problem where the eigenfield equation leads to a dynamic equation or, more specifically, to a first order differential equation of a variable L(x), where x is associated with the magnetic field h. Such differential equation has the property that: its stationary solution is the eigenfield equation and the spectral information contained in L(x) is directly related to the resonance spectrum. Such procedure, known as the "harmonic inversion problem" (HIP), can be solved by the "filter diagonalization method" (FDM) providing sufficient precision and resolution for the spectral analysis of the dynamic signals. Some examples are shown where the resonance fields are precisely determined in a single procedure, without the need to solve eigenvalue equations.


Subject(s)
Algorithms , Electron Spin Resonance Spectroscopy/methods , Models, Theoretical , Numerical Analysis, Computer-Assisted , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...