Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
PLoS One ; 19(5): e0299388, 2024.
Article in English | MEDLINE | ID: mdl-38696456

ABSTRACT

This study aimed to evaluate the seroprevalence and spatial and temporal clustering of SARS-CoV-2 antibodies in household cats within 63 counties in Illinois from October 2021 to May 2023. The analysis followed a stepwise approach. First, in a choropleth point map, we illustrated the distribution of county-level seroprevalence of SARS-CoV-2 antibodies. Next, spatial interpolation was used to predict the seroprevalence in counties without recorded data. Global and local clustering methods were used to identify the extent of clustering and the counties with high or low seroprevalence, respectively. Next, temporal, spatial, and space-time scan statistic was used to identify periods and counties with higher-than-expected seroprevalence. In the last step, to identify more distinct areas in counties with high seroprevalence, city-level analysis was conducted to identify temporal and space-time clusters. Among 1,715 samples tested by serological assays, 244 samples (14%) tested positive. Young cats had higher seropositivity than older cats, and the third quarter of the year had the highest odds of seropositivity. Three county-level space-time clusters with higher-than-expected seroprevalence were identified in the northeastern, central-east, and southwest regions of Illinois, occurring between June and October 2022. In the city-level analysis, 2 space-time clusters were identified in Chicago's downtown and the southwestern suburbs of Chicago between June and September 2022. Our results suggest that the high density of humans and cats in large cities such as Chicago, might play a role in the transmission and clustering of SARS-CoV-2. Our study provides an in-depth analysis of SARS-CoV-2 epidemiology in Illinois household cats, which will aid in COVID-19 control and prevention.


Subject(s)
Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spatio-Temporal Analysis , Cats , Animals , Illinois/epidemiology , Seroepidemiologic Studies , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/immunology , Antibodies, Viral/blood , Humans , Cluster Analysis , Female , Male , Cat Diseases/epidemiology , Cat Diseases/virology , Cat Diseases/immunology
2.
Viruses ; 16(5)2024 05 10.
Article in English | MEDLINE | ID: mdl-38793639

ABSTRACT

African Swine Fever Virus (ASFV) is a large dsDNA virus that encodes at least 150 proteins. The complexity of ASFV and lack of knowledge of effector immune functions and protective antigens have hindered the development of safe and effective ASF vaccines. In this study, we constructed four Orf virus recombinant vectors expressing individual ASFV genes B602L, -CP204L, E184L, and -I73R (ORFVΔ121-ASFV-B602L, -CP204L, -E184L, and -I73R). All recombinant viruses expressed the heterologous ASFV proteins in vitro. We then evaluated the immunogenicity of the recombinants by immunizing four-week-old piglets. In two independent animal studies, we observed high antibody titers against ASFV p30, encoded by CP204L gene. Using Pepscan ELISA, we identified a linear B-cell epitope of 12 amino acids in length (Peptide 15) located in an exposed loop region of p30 as an immunodominant ASFV epitope. Additionally, antibodies elicited against ASFV p30 presented antibody-dependent cellular cytotoxicity (ADCC) activity. These results underscore the role of p30 on antibody responses elicited against ASFV and highlight an important functional epitope that contributes to p30-specific antibody responses.


Subject(s)
African Swine Fever Virus , African Swine Fever , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , Epitopes, B-Lymphocyte , Immunodominant Epitopes , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Animals , Swine , Antibodies, Viral/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Immunodominant Epitopes/immunology , Immunodominant Epitopes/genetics , African Swine Fever/immunology , African Swine Fever/virology , Viral Proteins/immunology , Viral Proteins/genetics , Viral Vaccines/immunology , Viral Vaccines/genetics
3.
J Virol ; 98(3): e0190223, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38421180

ABSTRACT

The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus. IMPORTANCE: We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.


Subject(s)
COVID-19 , Orthopoxvirus , SARS-CoV-2 , Animals , Cats , COVID-19/virology , Phenotype , SARS-CoV-2/classification , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virulence Factors/genetics
4.
mSphere ; 8(4): e0006723, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37409816

ABSTRACT

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to public health. Besides humans, SARS-CoV-2 can infect several animal species. Highly sensitive and specific diagnostic reagents and assays are urgently needed for rapid detection and implementation of strategies for prevention and control of the infection in animals. In this study, we initially developed a panel of monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid protein. To detect SARS-CoV-2 antibodies in a broad spectrum of animal species, an mAb-based blocking enzyme-linked immunosorbent assay (bELISA) was developed. Test validation using a set of animal serum samples with known infection status obtained an optimal percentage of inhibition cut-off value of 17.6% with diagnostic sensitivity of 97.8% and diagnostic specificity of 98.9%. The assay demonstrates high repeatability as determined by a low coefficient of variation (7.23%, 4.89%, and 3.16%) between-runs, within-run, and within-plate, respectively. Testing of samples collected over time from experimentally infected cats showed that the bELISA was able to detect seroconversion as early as 7 days post-infection. Subsequently, the bELISA was applied for testing pet animals with coronavirus disease 2019 (COVID-19)-like symptoms and specific antibody responses were detected in two dogs. The panel of mAbs generated in this study provides a valuable tool for SARS-CoV-2 diagnostics and research. The mAb-based bELISA provides a serological test in aid of COVID-19 surveillance in animals. IMPORTANCE Antibody tests are commonly used as a diagnostic tool for detecting host immune response following infection. Serology (antibody) tests complement nucleic acid assays by providing a history of virus exposure, no matter symptoms developed from infection or the infection was asymptomatic. Serology tests for COVID-19 are in high demand, especially when the vaccines become available. They are important to determine the prevalence of the viral infection in a population and identify individuals who have been infected or vaccinated. ELISA is a simple and practically reliable serological test, which allows high-throughput implementation in surveillance studies. Several COVID-19 ELISA kits are available. However, they are mostly designed for human samples and species-specific secondary antibody is required for indirect ELISA format. This paper describes the development of an all species applicable monoclonal antibody (mAb)-based blocking ELISA to facilitate the detection and surveillance of COVID-19 in animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Animals , Dogs , COVID-19/diagnosis , Antibodies, Monoclonal , Sensitivity and Specificity , Enzyme-Linked Immunosorbent Assay
5.
Vaccines (Basel) ; 11(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37243108

ABSTRACT

Newcastle disease (ND) is endemic in Bangladesh. Locally produced or imported live Newcastle disease virus (NDV) vaccines based on lentogenic virus strains, locally produced live vaccines of the mesogenic Mukteswar strain, as well as imported inactivated vaccines of lentogenic strains, are being used in Bangladesh under different vaccination regimens. Despite these vaccinations, frequent outbreaks of ND are being reported in Bangladesh. Here we compared the efficacy of booster immunization with three different vaccines in chickens that had been primed with two doses of live LaSota vaccine. A total of 30 birds (Group A) were primed with two doses of live LaSota virus (genotype II) vaccine at days 7 and 28, while 20 birds (Group B) remained unvaccinated. At day 60, birds of Group A were divided into three sub-groups, which received booster immunizations with three different vaccines; A1: live LaSota vaccine, A2: inactivated LaSota vaccine, and A3: inactivated genotype XIII.2 vaccine (BD-C161/2010 strain from Bangladesh). Two weeks after booster vaccination (at day 74), all vaccinated birds (A1-A3) and half of the unvaccinated birds (B1) were challenged with a genotype XIII.2 virulent NDV (BD-C161/2010). A moderate antibody response was observed after the primary vaccination, which substantially increased after the booster vaccination in all groups. The mean HI titers induced by the inactivated LaSota vaccine (8.0 log2/5.0 log2 with LaSota/BD-C161/2010 HI antigen) and the inactivated BD-C161/2010 vaccine (6.7 log2/6.2 log2 with LaSota/BD-C161/2010 HI antigen) were significantly higher than those induced by the LaSota live booster vaccine (3.6 log2/2.6 log2 with LaSota/BD-C161/2010 HI antigen). Despite the differences in the antibody titers, all chickens (A1-A3) survived the virulent NDV challenge, while all the unvaccinated challenged birds died. Among the vaccinated groups, however, 50% of the chickens in Group A1 (live LaSota booster immunization) shed virus at 5- and 7-days post challenge (dpc), while 20% and 10% of the chickens in Group A2 (inactivated LaSota booster immunization) shed virus at 3 and 5 dpc, respectively, and only one chicken (10%) in Group A3 shed virus at 5 dpc. In conclusion, the genotype-matched inactivated NDV booster vaccine offers complete clinical protection and a significant reduction in virus shedding.

6.
bioRxiv ; 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36993307

ABSTRACT

The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to public health. Besides humans, SARS-CoV-2 can infect several animal species. Highly sensitive and specific diagnostic reagents and assays are urgently needed for rapid detection and implementation of strategies for prevention and control of the infection in animals. In this study, we initially developed a panel of monoclonal antibodies (mAbs) against SARS-CoV-2 nucleocapsid (N) protein. To detect SARS-CoV-2 antibodies in a broad spectrum of animal species, a mAb-based bELISA was developed. Test validation using a set of animal serum samples with known infection status obtained an optimal percentage of inhibition (PI) cut-off value of 17.6% with diagnostic sensitivity of 97.8% and diagnostic specificity of 98.9%. The assay demonstrates high repeatability as determined by a low coefficient of variation (7.23%, 6.95%, and 5.15%) between-runs, within-run, and within-plate, respectively. Testing of samples collected over time from experimentally infected cats showed that the bELISA was able to detect seroconversion as early as 7 days post-infection. Subsequently, the bELISA was applied for testing pet animals with COVID-19-like symptoms and specific antibody responses were detected in two dogs. The panel of mAbs generated in this study provides a valuable tool for SARS-CoV-2 diagnostics and research. The mAb-based bELISA provides a serological test in aid of COVID-19 surveillance in animals. IMPORTANCE: Antibody tests are commonly used as a diagnostic tool for detecting host immune response following infection. Serology (antibody) tests complement nucleic acid assays by providing a history of virus exposure, no matter symptoms developed from infection or the infection was asymptomatic. Serology tests for COVID-19 are in high demand, especially when the vaccines become available. They are important to determine the prevalence of the viral infection in a population and identify individuals who have been infected or vaccinated. ELISA is a simple and practically reliable serological test, which allows high-throughput implementation in surveillance studies. Several COVID-19 ELISA kits are available. However, they are mostly designed for human samples and species-specific secondary antibody is required for indirect ELISA format. This paper describes the development of an all species applicable monoclonal antibody (mAb)-based blocking ELISA to facilitate the detection and surveillance of COVID-19 in animals.

7.
Arch Virol ; 168(4): 124, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36988739

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths. Currently, two mRNA-based vaccines and one adenovirus-vectored vaccine have been approved and are available for use in the U.S. population. The versatility, low cost, and rapid production of DNA vaccines provide important advantages over other platforms. Additionally, DNA vaccines efficiently induce both B- and T-cell responses by expressing the antigen within transfected host cells, and the antigen, after being processed into peptides, can associate with MHC class I or II of antigen-presenting cells (APCs) to stimulate different T cell responses. However, the efficiency of DNA vaccination needs to be improved for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been used successfully in the field of veterinary oncology, resulting in high rates of response after electrochemotherapy. Here, we evaluate the safety, immunogenicity, and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects. Additionally, the vaccine elicited neutralizing antibodies and T cell responses on day 42 post-immunization using a low dose of the linear DNA construct in a prime-boost regimen. Most importantly, vaccination significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Humans , Animals , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccines, DNA/genetics , Ferrets , Virus Shedding , Antibodies, Viral , Antibodies, Neutralizing , DNA , Spike Glycoprotein, Coronavirus/genetics , Immunogenicity, Vaccine
8.
Proc Natl Acad Sci U S A ; 120(6): e2215067120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36719912

ABSTRACT

The spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (WTD) and its ability to transmit from deer to deer raised concerns about the role of WTD in the epidemiology and ecology of the virus. Here, we present a comprehensive cross-sectional study assessing the prevalence, genetic diversity, and evolution of SARS-CoV-2 in WTD in the State of New York (NY). A total of 5,462 retropharyngeal lymph node samples collected from free-ranging hunter-harvested WTD during the hunting seasons of 2020 (Season 1, September to December 2020, n = 2,700) and 2021 (Season 2, September to December 2021, n = 2,762) were tested by SARS-CoV-2 real-time RT-PCR (rRT-PCR). SARS-CoV-2 RNA was detected in 17 samples (0.6%) from Season 1 and in 583 samples (21.1%) from Season 2. Hotspots of infection were identified in multiple confined geographic areas of NY. Sequence analysis of SARS-CoV-2 genomes from 164 samples demonstrated the presence of multiple SARS-CoV-2 lineages and the cocirculation of three major variants of concern (VOCs) (Alpha, Gamma, and Delta) in WTD. Our analysis suggests the occurrence of multiple spillover events (human to deer) of the Alpha and Delta lineages with subsequent deer-to-deer transmission and adaptation of the viruses. Detection of Alpha and Gamma variants in WTD long after their broad circulation in humans in NY suggests that WTD may serve as a wildlife reservoir for VOCs no longer circulating in humans. Thus, implementation of continuous surveillance programs to monitor SARS-CoV-2 dynamics in WTD is warranted, and measures to minimize virus transmission between humans and animals are urgently needed.


Subject(s)
COVID-19 , Deer , Animals , Humans , Animals, Wild , SARS-CoV-2/genetics , Cross-Sectional Studies , RNA, Viral/genetics , COVID-19/epidemiology
9.
Microbiol Spectr ; 10(5): e0056322, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36165775

ABSTRACT

The emergence of the SARS-CoV-2 B.1.617.2 lineage (Delta variant) in 2021 was associated with increased case numbers and test positivity rates, including a large number of infections in fully vaccinated individuals. Here, we describe the findings of an investigation conducted in Tompkins County, New York, to evaluate factors underlying a significant uptick in the number of coronavirus disease 2019 (COVID-19) cases observed in the months of July and August 2021. We performed genomic surveillance and genotyping as well as virological assessments to determine infectivity of the virus in a select number of clinical diagnostic samples. Genomic sequence analyses revealed complete replacement of the B.1.1.7 lineage (Alpha variant) with the B.1.617.2 lineage (Delta variant) between July 1 and August 4 2021. We observed a strong association between viral RNA loads detected by real-time reverse transcriptase PCR and infectious virus detected in respiratory secretions by virus titration. A marked increase in positive cases among fully vaccinated individuals was observed. The sequence divergence between two index Delta variant cases in April and May, and the cases after July 1st, revealed independent Delta variant introductions in Tompkins County. Contact tracing information enabled the detection of clusters of connected cases within closely related phylogenetic clusters. We also found evidence of transmission between vaccinated individuals and between vaccinated and unvaccinated individuals. This was confirmed by detection and isolation of infectious virus from a group of individuals within epidemiologically connected transmission clusters, confirming shedding of high viral loads and transmission of the virus by fully vaccinated individuals. IMPORTANCE The SARS-CoV-2 lineage B.1.617.2 (Delta variant) emerged in Asia and rapidly spread to other countries, becoming the dominant circulating lineage. Worldwide infections with B.1.617.2 peaked at a time in which vaccination rates were increasing. In this study, we present data characterizing the emergence of SARS-CoV-2 lineage B.1.617.2 (Delta variant) in Tompkins County, New York, which has one of the highest vaccination rates in the state. We present evidence demonstrating infection, replication, and transmission of SARS-CoV-2 lineage B.1.617.2 (Delta variant) between fully vaccinated individuals. Importantly, infectious virus loads were determined in a subset of samples and demonstrated shedding of high viral titers in respiratory secretions of vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , Phylogeny , COVID-19/epidemiology
10.
J Virol ; 96(17): e0096122, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000850

ABSTRACT

Omicron (B.1.1.529) is the most recent SARS-CoV-2 variant of concern, which emerged in late 2021 and rapidly achieved global predominance by early 2022. In this study, we compared the infection dynamics, tissue tropism, and pathogenesis and pathogenicity of SARS-CoV-2 D614G (B.1), Delta (B.1.617.2), and Omicron BA.1.1 (B.1.1.529) variants in a highly susceptible feline model of infection. Although D614G- and Delta-inoculated cats became lethargic and showed increased body temperatures between days 1 and 3 postinfection (pi), Omicron-inoculated cats remained subclinical and, similar to control animals, gained weight throughout the 14-day experimental period. Intranasal inoculation of cats with D614G- and the Delta variants resulted in high infectious virus shedding in nasal secretions (up to 6.3 log10 TCID50.Ml-1), whereas strikingly lower level of viruses shedding (<3.1 log10 TCID50.Ml-1) was observed in Omicron-inoculated animals. In addition, tissue distribution of the Omicron variant was markedly reduced in comparison to the D614G and Delta variants, as evidenced by lower in situ viral RNA detection, in situ viral immunofluorescence staining, and viral loads in tissues on days 3, 5, and 14 pi. Nasal turbinate, trachea, and lung were the main-but not the only-sites of replication for all three viral variants. However, only scarce virus staining and lower viral titers suggest lower levels of viral replication in tissues from Omicron-infected animals. Notably, while D614G- and Delta-inoculated cats presented pneumonia, histologic examination of the lungs from Omicron-infected cats revealed mild to modest inflammation. Together, these results demonstrate that the Omicron variant BA.1.1 is less pathogenic than D614G and Delta variants in a highly susceptible feline model. IMPORTANCE The SARS-CoV-2 Omicron (B.1.1.529) variant of concern emerged in South Africa late in 2021 and rapidly spread across the world causing a significant increase in the number of infections. Importantly, this variant was also associated with an increased risk of reinfections. However, the number of hospitalizations and deaths due to COVID-19 did not follow the same trends. These early observations suggested effective protection conferred by immunizations and/or overall lower virulence of the highly mutated variant virus. In this study we present novel evidence demonstrating that the Omicron BA.1.1 variant of concern presents a lower pathogenicity when compared to D614G- or Delta variants in cats. Clinical, virological, and pathological evaluations revealed lower disease severity, viral replication, and lung pathology in Omicron-infected cats when compared with D614G and Delta variant inoculated animals, confirming that Omicron BA.1.1 is less pathogenic in a highly susceptible feline model of infection.


Subject(s)
COVID-19/virology , SARS-CoV-2 , Animals , Cats , Disease Models, Animal , Humans , SARS-CoV-2/pathogenicity , Virulence , Virus Replication
11.
Arch Virol ; 167(8): 1659-1668, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35708765

ABSTRACT

Bovine gammaherpesvirus 4 (BoHV-4) is ubiquitous in cattle worldwide, and it has been detected in animals exhibiting broad clinical presentations. The virus has been detected in the United States since the 1970s; however, its clinical relevance remains unknown. Here, we determined the complete genome sequences of two contemporary BoHV-4 isolates obtained from respiratory (SD16-38) or reproductive (SD16-49) tract specimens and assessed clinical, virological, and pathological outcomes upon intranasal (IN) inoculation of calves with the respiratory BoHV-4 isolate SD16-38. A slight and transient increase in body temperature was observed in BoHV-4-inoculated calves. Additionally, transient viremia and virus shedding in nasal secretions were observed in all inoculated calves. BoHV-4 DNA was detected by nested PCR in the tonsil and regional lymph nodes (LNs) of calves euthanized on day 5 post-inoculation (pi) and in the lungs of calves euthanized on day 10 pi. Calves euthanized on day 35 pi harbored BoHV-4 DNA in the respiratory tract (turbinates, trachea, lungs), regional lymphoid tissues, and trigeminal ganglia. Interestingly, in situ hybridization revealed the presence of BoHV-4 DNA in nerve bundles surrounding the trigeminal ganglia and retropharyngeal lymph nodes (day 35 pi). No histological changes were observed in the respiratory tract (turbinate, trachea, and lung), lymphoid tissues (tonsil, LNs, thymus, and spleen), or central nervous tissues (olfactory bulb and trigeminal ganglia) sampled throughout the animal studies (days 5, 10, and 35 pi). This study contributes to the understanding of the infection dynamics and tissue distribution of BoHV-4 following IN infection in calves. These results suggest that BoHV-4 SD16-38 used in our study has low pathogenicity in calves upon intranasal inoculation.


Subject(s)
Cattle Diseases , Herpesviridae Infections , Herpesvirus 1, Bovine , Herpesvirus 4, Bovine , Animals , Antibodies, Viral , Cattle , Herpesviridae Infections/veterinary , Herpesvirus 4, Bovine/genetics , Virus Shedding
12.
bioRxiv ; 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35734088

ABSTRACT

Omicron (B.1.1.529) is the most recent SARS-CoV-2 variant of concern (VOC), which emerged in late 2021 and rapidly achieved global predominance in early 2022. In this study, we compared the infection dynamics, tissue tropism and pathogenesis and pathogenicity of SARS-CoV-2 D614G (B.1), Delta (B.1.617.2) and Omicron BA.1.1 sublineage (B.1.1.529) variants in a highly susceptible feline model of infection. While D614G- and Delta-inoculated cats became lethargic, and showed increased body temperatures between days 1 and 3 post-infection (pi), Omicron-inoculated cats remained subclinical and, similar to control animals, gained weight throughout the 14-day experimental period. Intranasal inoculation of cats with D614G- and the Delta variants resulted in high infectious virus shedding in nasal secretions (up to 6.3 log10 TCID 50 .ml -1 ), whereas strikingly lower level of viruses shedding (<3.1 log10 TCID 50 .ml -1 ) was observed in Omicron-inoculated animals. In addition, tissue distribution of the Omicron variant was markedly reduced in comparison to the D614G and Delta variants, as evidenced by in situ viral RNA detection, in situ immunofluorescence, and quantification of viral loads in tissues on days 3, 5, and 14 pi. Nasal turbinate, trachea, and lung were the main - but not the only - sites of replication for all three viral variants. However, only scarce virus staining and lower viral titers suggest lower levels of viral replication in tissues from Omicron-infected animals. Notably, while D614G- and Delta-inoculated cats had severe pneumonia, histologic examination of the lungs from Omicron-infected cats revealed mild to modest inflammation. Together, these results demonstrate that the Omicron variant BA.1.1 is less pathogenic than D614G and Delta variants in a highly susceptible feline model. Author Summary: The SARS-CoV-2 Omicron (B.1.1.529) variant of concern (VOC) emerged in South Africa late in 2021 and rapidly spread across the world causing a significant increase in the number of infections. Importantly, this variant was also associated with an increased risk of reinfections. However, the number of hospitalizations and deaths due to COVID-19 did not follow the same trends. These early observations, suggested effective protection conferred by immunizations and/or overall lower virulence of the highly mutated variant virus. In this study we present novel evidence demonstrating that the Omicron BA.1.1 variant of concern (VOC) presents a lower pathogenicity when compared to D614G- or Delta variants in cats. Clinical, virological and pathological evaluations revealed lower disease severity, viral replication and lung pathology in Omicron-infected cats when compared to D614G and Delta variant inoculated animals, confirming that Omicron BA.1.1 is less pathogenic in a highly susceptible feline model of infection.

13.
Microbiol Spectr ; 10(3): e0226421, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35575498

ABSTRACT

In the present study, we assessed the diagnostic sensitivity and determined the viral RNA load and infectivity of SARS-CoV-2 in paired respiratory (nasopharyngeal and anterior nares) and oral samples (saliva and sublingual swab). Samples were collected from 77 individuals of which 75 were diagnosed with COVID-19 and classified as symptomatic (n = 29), asymptomatic (n = 31), or postsymptomatic (n = 15). Specimens were collected at one time point from each individual, between day 1 and 23 after the initial COVID-19 diagnosis, and included self-collected saliva (S), or sublingual (SL) swab, and bilateral anterior nares (AN) swab, followed by health care provider collected nasopharyngeal (NP) swab. Sixty-three specimen sets were tested using five assay/platforms. The diagnostic sensitivity of each assay/platform and specimen type was determined. Of the 63 specimen sets, SARS-CoV-2 was detected in 62 NP specimens, 52 AN specimens, 59 saliva specimens, and 31 SL specimens by at least one platform. Infectious SARS-CoV-2 was isolated from 21 NP, 13 AN, 12 saliva, and one SL specimen out of 50 specimen sets. SARS-CoV-2 isolation was most successful up to 5 days after initial COVID-19 diagnosis using NP specimens from symptomatic patients (16 of 24 positives, 66.67%), followed by specimens from asymptomatic patients (5 of 17 positives, 29.41%), while it was not very successful with specimens from postsymptomatic patients. Benefits of self-collected saliva and AN specimens balance the loss of sensitivity relative to NP specimens. Therefore, saliva and AN specimens are acceptable alternatives for symptomatic SARS-CoV-2 diagnostic testing or surveillance with increased sampling frequency of asymptomatic individuals. IMPORTANCE The dynamics of infection with SARS-CoV-2 have a significant impact on virus infectivity and in the diagnostic sensitivity of molecular and classic virus detection tests. In the present study we determined the diagnostic sensitivity of paired respiratory (nasopharyngeal and anterior nares swabs) and oral secretions (saliva and sublingual swab) and assessed infectious virus shedding patterns by symptomatic, asymptomatic, or postsymptomatic individuals. Understanding the diagnostic performance of these specimens and the patterns of infectious virus shedding in these bodily secretions provides critical information to control COVID-19, and may help to refine guidelines on isolation and quarantine of positive individuals and their close contacts identified through epidemiological investigations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Specimen Handling , Viral Load
14.
PLoS Pathog ; 18(3): e1010197, 2022 03.
Article in English | MEDLINE | ID: mdl-35312736

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30-40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3-4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.


Subject(s)
COVID-19 , Deer , Animals , COVID-19/veterinary , SARS-CoV-2 , Tropism
15.
Nature ; 605(7909): 340-348, 2022 05.
Article in English | MEDLINE | ID: mdl-35344983

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus remains a global public health crisis. Although widespread vaccination campaigns are underway, their efficacy is reduced owing to emerging variants of concern1,2. Development of host-directed therapeutics and prophylactics could limit such resistance and offer urgently needed protection against variants of concern3,4. Attractive pharmacological targets to impede viral entry include type-II transmembrane serine proteases (TTSPs) such as TMPRSS2; these proteases cleave the viral spike protein to expose the fusion peptide for cell entry, and thus have an essential role in the virus lifecycle5,6. Here we identify and characterize a small-molecule compound, N-0385, which exhibits low nanomolar potency and a selectivity index of higher than 106 in inhibiting SARS-CoV-2 infection in human lung cells and in donor-derived colonoids7. In Calu-3 cells it inhibits the entry of the SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). Notably, in the K18-human ACE2 transgenic mouse model of severe COVID-19, we found that N-0385 affords a high level of prophylactic and therapeutic benefit after multiple administrations or even after a single administration. Together, our findings show that TTSP-mediated proteolytic maturation of the spike protein is critical for SARS-CoV-2 infection in vivo, and suggest that N-0385 provides an effective early treatment option against COVID-19 and emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Serine Proteinase Inhibitors , Animals , COVID-19/prevention & control , COVID-19/virology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , SARS-CoV-2/drug effects , Serine Endopeptidases , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/therapeutic use , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
16.
J Virol ; 96(3): e0145521, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34817200

ABSTRACT

Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the outcome of coronavirus disease 2019 (COVID-19) have been linked to underlying health conditions and the age of affected individuals. Here, we assessed the effect of age on SARS-CoV-2 infection using a ferret model. For this, young (6-month-old) and aged (18- to 39-month-old) ferrets were inoculated intranasally with various doses of SARS-CoV-2. By using infectious virus shedding in respiratory secretions and seroconversion, we estimated that the infectious dose of SARS-CoV-2 in aged animals is ∼32 PFU per animal, while in young animals it was estimated to be ∼100 PFU. We showed that viral replication in the upper respiratory tract and shedding in respiratory secretions is enhanced in aged ferrets compared to young animals. Similar to observations in humans, this was associated with higher transcription levels of two key viral entry factors, ACE2 and TMPRSS2, in the upper respiratory tract of aged ferrets. IMPORTANCE In humans, ACE2 and TMPRSS2 are expressed in various cells and tissues, and differential expression has been described in young and old people, with a higher level of expressing cells being detected in the nasal brushing of older people than young individuals. We described the same pattern occurring in ferrets, and we demonstrated that age affects susceptibility of ferrets to SARS-CoV-2. Aged animals were more likely to get infected when exposed to lower infectious dose of the virus than young animals, and the viral replication in the upper respiratory tract and shedding are enhanced in aged ferrets. Together, these results suggest that the higher infectivity and enhanced ability of SARS-CoV-2 to replicate in aged individuals is associated, at least in part, with transcription levels of ACE2 and TMPRSS2 at the sites of virus entry. The young and aged ferret model developed here may represent a great platform to assess age-related differences in SARS-CoV-2 infection dynamics and replication.


Subject(s)
COVID-19/virology , Disease Susceptibility , Host-Pathogen Interactions , SARS-CoV-2/physiology , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biomarkers , COVID-19/genetics , COVID-19/immunology , Disease Models, Animal , Ferrets , Gene Expression , Host-Pathogen Interactions/immunology , Organ Specificity , RNA, Viral , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Viral Load
17.
Ciênc. rural (Online) ; 52(2): e20210209, 2022. tab, graf, ilus, mapas
Article in English | VETINDEX, LILACS | ID: biblio-1339658

ABSTRACT

Porcine circovirus 2 (PCV2) has a considerable economic impact on the pork industry worldwide for more than two decades. In 2016, a new circovirus, porcine circovirus 3 (PCV3), was described; since then, it has been reported to be associated with diseased or even in clinically healthy swine in several countries. Considering the importance of wild boars as reservoirs of swine pathogens and the extensive distribution of these animals in Rio Grande do Sul and throughout the national territory, we searched for PCV2 and PCV3 in twenty-six wild boars coupled with necropsy and histologic examination of the sampled animals. Using PCR, 182 tissue samples were analyzed, including the heart, kidneys, liver, lung, lymph nodes, spleen, and tonsils. PCV2 and PCV3 were detected in 57.7% (15/26) and 15.4% (4/26) of wild boars, respectively. Furthermore, co-infection with PCV2 and PCV3 was detected in one of these animals, with PCV2 or PCV3 DNA detection in multiple organs. Histological examination showed mild to moderate and multifocal lymphoplasmacytic interstitial nephritis distributed randomly throughout the renal cortex, apparently unrelated to PCV2 or PCV3 detection. The wild boar population in Brazil is extensive, indicating the presence of a larger number of swine pathogen hosts. In the present study, more than half of the wild boars harbored PCV2; and although less frequently, PCV3 was also detected. Therefore, free-living wild boars can serve as reservoirs of swine circoviruses in southern Brazil.


O circovírus suíno 2 (PCV2) tem causado impacto econômico na indústria suína em todo o mundo por mais de duas décadas. Em 2016, um novo circovírus foi descrito - circovírus suíno 3 (PCV3) - e desde então tem sido relatado em vários países associado a doenças ou mesmo suínos saudáveis. Diante da importância dos javalis como reservatórios de patógenos suínos, e da ampla distribuição desses animais no Rio Grande do Sul e em todo o território nacional, foi realizada pesquisa de PCV2 e PCV3 em vinte e seis javalis (10 fêmeas e 16 machos). Necropsia e exame histológico foram realizados. Utilizando PCR, foram analisadas 182 amostras de tecidos incluindo: coração, rins, fígado, pulmão, linfonodos, baço e tonsila. PCV2 e PCV3 foram detectados por PCR em 57,7% (15/26) e 15,4% (4/26) dos javalis, respectivamente. Um destes animais estava co-infectado por PCV2 e PCV3. O DNA do PCV2 ou PCV3 foi detectado em multiplos órgãos. No exame histológico foi observada nefrite intersticial linfoplasmocitária multifocal leve a moderada, distribuída aleatoriamente pelo córtex renal, aparentemente sem relação com a detecção de DNA viral. A população de javalis no Brasil é extensa, resultando em maior número de hospedeiros para patógenos de suínos. No presente estudo, mais da metade dos javalis capturados abrigavam PCV2 e, embora menos frequente, PCV3 também foi detectado. Os javalis de vida livre podem servir como reservatórios de circovírus suínos no sul do Brasil.


Subject(s)
Animals , Disease Reservoirs/veterinary , Circovirus/isolation & purification , Circoviridae Infections/epidemiology , Sus scrofa/virology , Brazil , Polymerase Chain Reaction/veterinary
18.
Emerg Infect Dis ; 27(12): 3171-3173, 2021 12.
Article in English | MEDLINE | ID: mdl-34808082

ABSTRACT

We report infection of 3 Malayan tigers with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 (Alpha) variant at a zoologic park in Virginia, USA. All tigers exhibited respiratory signs consistent with SARS-CoV-2 infection. These findings show that tigers are susceptible to infection with the SARS-CoV-2 B.1.1.7 variant.


Subject(s)
COVID-19 , Tigers , Animals , Humans , SARS-CoV-2 , Virginia/epidemiology
19.
J Am Vet Med Assoc ; 259(9): 1032-1039, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34647475

ABSTRACT

OBJECTIVE: To establish a pathoepidemiological model to evaluate the role of SARS-CoV-2 infection in the first 10 companion animals that died while infected with SARS-CoV-2 in the US. ANIMALS: 10 cats and dogs that tested positive for SARS-CoV-2 and died or were euthanized in the US between March 2020 and January 2021. PROCEDURES: A standardized algorithm was developed to direct case investigations, determine the necessity of certain diagnostic procedures, and evaluate the role, if any, that SARS-CoV-2 infection played in the animals' course of disease and death. Using clinical and diagnostic information collected by state animal health officials, state public health veterinarians, and other state and local partners, this algorithm was applied to each animal case. RESULTS: SARS-CoV-2 was an incidental finding in 8 animals, was suspected to have contributed to the severity of clinical signs leading to euthanasia in 1 dog, and was the primary reason for death for 1 cat. CONCLUSIONS AND CLINICAL RELEVANCE: This report provides the global community with a standardized process for directing case investigations, determining the necessity of certain diagnostic procedures, and determining the clinical significance of SARS-CoV-2 infections in animals with fatal outcomes and provides evidence that SARS-CoV-2 can, in rare circumstances, cause or contribute to death in pets.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/veterinary , Cat Diseases/diagnosis , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Pets , SARS-CoV-2
20.
Viruses ; 13(8)2021 07 30.
Article in English | MEDLINE | ID: mdl-34452371

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the susceptibility of animals and their potential to act as reservoirs or intermediate hosts for the virus has been of significant interest. Pigs are susceptible to multiple coronaviruses and have been used as an animal model for other human infectious diseases. Research groups have experimentally challenged swine with human SARS-CoV-2 isolates with results suggesting limited to no viral replication. For this study, a SARS-CoV-2 isolate obtained from a tiger which is identical to human SARS-CoV-2 isolates detected in New York City and contains the D614G S mutation was utilized for inoculation. Pigs were challenged via intravenous, intratracheal, or intranasal routes of inoculation (n = 4/route). No pigs developed clinical signs, but at least one pig in each group had one or more PCR positive nasal/oral swabs or rectal swabs after inoculation. All pigs in the intravenous group developed a transient neutralizing antibody titer, but only three other challenged pigs developed titers greater than 1:8. No gross or histologic changes were observed in tissue samples collected at necropsy. In addition, no PCR positive samples were positive by virus isolation. Inoculated animals were unable to transmit virus to naïve contact animals. The data from this experiment as well as from other laboratories supports that swine are not likely to play a role in the epidemiology and spread of SARS-CoV-2.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Administration, Intranasal , Administration, Intravenous , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Disease Models, Animal , Humans , Mouth/virology , Nose/virology , SARS-CoV-2/genetics , Swine , Trachea/virology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...