Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 46(39): 13364-13375, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-28829081

ABSTRACT

The single compartmental Schiff base N,N'-ethylenebis(salicylaldimine) (H2L) and [SnPh2Cl2] were utilized to synthesize heterobimetallic 3d metal-Sn complexes, the CoIIISnIV compound [{SnPhCl2}(1κO2N2,2κO2-µ-L)(µ-OMe){CoPh}] (1), the NiIISnIV compound [{SnPh2Cl2}(1κO2N2,2κO2-µ-L)Ni] (2) and the CuIISnIV compound [{SnPh2Cl2}(1κO2N2,2κO2-µ-L)Cu] (3). Attempting to prepare the ethoxido bridged compound analogous to 1 (in ethanol) gives the phenylcobalt(iii) complex [Co(κO2N2)Ph(H2O)] (1A). Single crystal X-ray structure analyses reveal that 1 is derived from an intermetallic (Sn to Co) phenyl shift and that 1A is a transmetallated product; in compounds 2 and 3, the phenyl groups remain coordinated to SnIV but one of the π rings interacts with the 3d-metal. Thus, while systems 1 and 1A show the lability of the phenyl ligand, 2 and 3 reveal its flexible nature. Theoretical DFT calculations demonstrate that the conceivable Ph group shift occurs in the oxidized CoIII intermediate [{SnIVPh2Cl2}(κO2N2-µ-L){CoIII(MeO)}] (5) rather than in the corresponding CoII species [{SnIVPh2Cl2}(κO2N2-µ-L){CoII(MeOH)}] (4). Their catalytic studies in the Baeyer-Villiger oxidation of cyclohexanone into ε-caprolactone with two different oxidants reveal that the sacrificial aldehyde method (with dioxygen/benzaldehyde) is better than that with aqueous H2O2 (30%). The effects of various reaction parameters such as solvent, catalyst amount, temperature, time and heating method were studied allowing the achievement of yields up to 83% with 89% selectivity.

2.
Inorg Chem ; 55(18): 9187-203, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27563933

ABSTRACT

Six dinuclear vanadium(V) complexes have been synthesized: NH4[(VO2)2((H)LH)] (NH4[1]), NH4[(VO2)2((t-Bu)LH)] (NH4[2]), NH4[(VO2)2((Cl)LH)] (NH4[3]), [(VO2)(VO)((H)LH)(CH3O)] (4), [(VO2)(VO)((t-Bu)LH)(C2H5O)] (5), and [(VO2)(VO)((Cl)LH)(CH3O)(CH3OH/H2O)] (6) (where (H)LH4 = 1,5-bis(2-hydroxybenzaldehyde)carbohydrazone, (t-Bu)LH4 = 1,5-bis(3,5-di-tert-butyl-2-hydroxybenzaldehyde)carbohydrazone, and (Cl)LH4 = 1,5-bis(3,5-dichloro-2-hydroxybenzaldehyde)carbohydrazone). The structures of NH4[1] and 4-6 have been determined by X-ray diffraction (XRD) analysis. In all complexes, the triply deprotonated ligand accommodates two V ions, using two different binding sites ONN and ONO separated by a diazine unit -N-N-. In two pockets of NH4[1], two identical VO2(+) entities are present, whereas, in those of 4-6, two different VO2(+) and VO(3+) are bound. The highest oxidation state of V ions was corroborated by X-ray data, indicating the presence of alkoxido ligand bound to VO(3+) in 4-6, charge density measurements on 4, magnetic susceptibility, NMR spectroscopy, spectroelectrochemistry, and density functional theory (DFT) calculations. All four complexes characterized by XRD form dimeric associates in the solid state, which, however, do not remain intact in solution. Compounds NH4[1], NH4[2], and 4-6 were applied as alternative selective homogeneous catalysts for the industrially significant oxidation of cyclohexane to cyclohexanol and cyclohexanone. The peroxidative (with tert-butyl hydroperoxide, TBHP) oxidation of cyclohexane was performed under solvent-free and additive-free conditions and under low-power microwave (MW) irradiation. Cyclohexanol and cyclohexanone were the only products obtained (high selectivity), after 1.5 h of MW irradiation. Theoretical calculations suggest a key mechanistic role played by the carbohydrazone ligand, which can undergo reduction, instead of the metal itself, to form an active reduced form of the catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...