Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 266: 116153, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38277916

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/drug therapy , Quality of Life , Immune System , Inflammation/drug therapy , Cytokines , Immunologic Factors
2.
Molecules ; 27(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458711

ABSTRACT

A rare dihydoxyflavan-epicatechin proanthocyanidin, entcassiflavan-(4ß→8)-epicatechin, was isolated from Dalbergia monetaria, a plant widely used by traditional people from the Amazon to treat urinary tract infections. The constitution and relative configuration of the compound were elucidated by HR-MS and detailed 1D- and 2D-NMR measurements. By comparing the experimental electronic circular dichroism (ECD) spectrum with the calculated ECD spectra of all 16 possible isomers, the absolute configuration, the interflavan linkage, and the atropisomers could be determined.


Subject(s)
Catechin , Dalbergia , Circular Dichroism , Electronics , Humans , Molecular Structure
3.
Phytother Res ; 36(4): 1459-1506, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35229374

ABSTRACT

Terpenes are one of the most abundant classes of secondary metabolites produced by plants and can be divided based on the number of isoprene units (C5 ) in monoterpenes (2 units-C10 ), sesquiterpenes (3 units-C15 ), diterpenes (4 units-C20 ), triterpenes (6 units-C30 ), etc. Chemically, triterpenes are classified based on their structural skeleton including lanostanes, euphanes, cycloartanes, ursanes, oleananes, lupanes, tirucallanes, cucurbitanes, dammaranes, baccharanes, friedelanes, hopanes, serratanes etc. Additionally, glycosylated (saponins) or highly oxidated/degraded (limonoids) triterpenes could be found in nature. The antiinflammatory effect and action as immunomodulators of these secondary metabolites have been demonstrated in different studies. This review reports an overview of articles published in the last 15 years (from 2006 to 2021 using PubMed and SciFinder database) describing the antiinflammatory effects of different triterpenes with their presumed mechanism of action, suggesting that triterpenes could be appointed as natural products with future pharmaceutical applicability.


Subject(s)
Biological Products , Saponins , Triterpenes , Anti-Inflammatory Agents/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Molecular Structure , Plants , Triterpenes/chemistry , Triterpenes/pharmacology
4.
J Mass Spectrom ; 56(12): e4793, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34881488

ABSTRACT

The rapid annotation and identification by mass spectrometry techniques of flavonoids remains a challenge, due to their structural diversity and the limited availability of reference standards. This study applies a workflow to characterize two isoflavonoids, the orobol-C-glycosides analogs, using high-energy collisional dissociation (HCD)- and collision-induced dissociation (CID)-type fragmentation patterns, and also to evaluate the antioxidant effects of these compounds by ferric reducing antioxidant power (FRAP), 2,2'-azino-bis(3-ethylbenzothiazolin acid) 6-sulfonic acid (ABTS), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. By the CID-type fragmentation, in positive mode and at all high-resolution mass spectrometry (HRMS) multiple stage, there were shown differences in the annotation of the compounds, mainly concerning some ratios of relative abundance. At CID-MS2 20 eV, the compounds could be efficiently characterized, because they present distinct base peaks [M + H]+ and [M + H-H2 O]+ for the orobol-8-C- and orobol-6-C-glycoside, respectively. Similarly, by the HCD-type fragmentation, in HRMS2 stage, differences between orobol analogs in both mode of ionization were observed. However, the HR HCD-MS2 at 80 eV, in positive mode, generated more ions and each isomer presented different base peaks ions, [0,2X]+ for the orobol-8-C-glycoside and [0,3X]+ for the orobol-6-C-glycoside. By the DPPH, the 8-C-derivative showed a very close value compared with the standard rutin and, in the ABTS method, a higher radical-scavenging activity. In both methods, the EC50 of orobol-8-C-glycoside was almost twice better compared with orobol-6-C-glycoside. In FRAP, both C-glycosides showed a good capacity as Fe+3 reducing agents. We could realize that combined MS techniques, highlighting the positive mode of ionization, can be used to evaluate the isoflavones analogs being useful to differentiate between the isomeric flavones; therefore, these data are important to mass spectrometry dereplication studies become more efficient. HIGHLIGHTS: The MS2, in positive mode of ionization, at low CID energies (15 and 20 eV) and at high HCD energies (50 eV), was suitable to characterize orobol 8 and 6-C-derivatives. Positive mode of ionization was effective to rapid annotation of each orobol C-glycoside. The orobol C-derivatives showed high radical scavenging effects. Orobol-8-C-glycoside showed higher antioxidant capacity.

6.
Article in English | MEDLINE | ID: mdl-33957353

ABSTRACT

Phorbas is a widely studied genus of marine sponge and produce structurally rich cytotoxic metabolites. Still, only few studies have assessed metabolites present in Brazilian species. To circumvent redundancy, in this work, we applied and herein report the use of a scouting liquid chromatographic system associate to the design of experiment produced by the DryLab® software to obtain a fast and efficient chromatographic separation of the active hexane fraction, further enabling untargeted high-resolution mass spectrometry (HRMS) data. To this end, a crude hydroalcoholic extract of the sponge Phorbas amaranthus collected in Brazilian coast was prepared and partitioned. The cytotoxicity of the crude extract and the fractions was evaluated using tumor cell culture models. Fragmentation pathways assembled from HRMS data allowed the annotation of 18 known Phorbas metabolites, while 17 metabolites were inferred based on Global Natural Product Social Molecular Networking (GNPS), matching with a further 29 metabolites annotated through molecular subnetwork. The workflow employed demonstrates that chromatographic method development can be accelerated by the use of automated scouting systems and DryLab®, which is useful for profiling natural product libraries, as well as data curation by molecular clusters and should be incorporated to the tools of natural product chemists.


Subject(s)
Chromatography, Liquid/methods , Porifera , Tissue Extracts , Animals , Cell Survival/drug effects , HCT116 Cells , Humans , Lysophospholipids/chemistry , Porifera/chemistry , Porifera/metabolism , Steroids/analysis , Steroids/chemistry , Terpenes/analysis , Terpenes/chemistry , Tissue Extracts/analysis , Tissue Extracts/metabolism , Tissue Extracts/toxicity
7.
Planta Med ; 86(12): 858-866, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32483774

ABSTRACT

Dalbergia monetaria is an Amazonian plant whose bark is widely used to treat urinary tract infections. This paper describes a bio-guided study of ethanolic extracts from the bark and leaves of D. monetaria, in a search for metabolites active against human pathogenic bacteria. In vitro assays were performed against 10 bacterial strains, highlighting methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Fractioning of the extracts was performed using instrumental and classical techniques, and samples were characterized by UHPLC-HRMS/MS. Ethyl acetate fractions from bark and leaves showed similar antibacterial activities. EAFB is enriched in isoflavone C-glucosides and EAFL enriched in proanthocyanidins. Subfractions from EAFL presented higher activity and showed a complex profile of proanthocyanidins constructed by (epi)-cassiaflavan and (epi)-catechin units, including dimers, trimers and tetramers. The fragmentation pattern emphasized the neutral loss of cassiaflavan units by quinone-methide fission. Fraction SL7-6, constituted by (ent)-cassiaflavan-(ent)-cassiaflavan-(epi)-catechin isomers, showed the lowest MIC against the S. aureus and P. aeruginosa with values corresponding to 64 and 32 µg/mL, respectively. Cassiaflavan-proanthocyanidins have not been found previously in another botanical genus, except in Cassia, and the traditional medicinal use of D. monetaria might be related to the antibacterial activity of proanthocyanidins characterized in the species.


Subject(s)
Dalbergia , Methicillin-Resistant Staphylococcus aureus , Plants, Medicinal , Proanthocyanidins , Anti-Bacterial Agents , Chromatography, High Pressure Liquid , Humans , Microbial Sensitivity Tests , Plant Extracts , Staphylococcus aureus
8.
Food Funct ; 9(11): 5621-5628, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30302477

ABSTRACT

Leaf fractions of Garcinia brasiliensis were evaluated concerning their antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties, and the most active fraction was then fully characterized regarding its phenolic composition using HPLC-DAD-ESI/MSn. The ethyl acetate fraction from partitioning of the methanolic leaf extract revealed a strong antioxidant activity that was comparable to Trolox, the positive control. This fraction was also able to show a significant antimicrobial activity against Gram-positive and Gram-negative bacteria and the fungus Candida albicans. However, the dichloromethane fraction was found to present the highest anti-inflammatory (83 ± 9 µg mL-1) and cytotoxic activities, thus presenting slight toxicity using a non-tumor cell line. Regarding the phenolic profile, the ethyl acetate fraction presented twelve flavonoids, with morelloflavone-7''-O-glucoside (52.1 ± 0.4 mg g-1) and gardinia biflavonoid 2a glucoside (27.5 ± 0.2 mg g-1) being the major compounds identified. These results indicate that leaves of G. brasiliensis might be a potential source of natural biomolecules for pharmaceutical and medicinal applications.


Subject(s)
Garcinia/chemistry , Phytochemicals/analysis , Plant Leaves/chemistry , Anti-Infective Agents/analysis , Antioxidants/analysis , Brazil , Candida albicans/drug effects , Flavonoids/analysis , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , MCF-7 Cells , Phenols/analysis , Plant Extracts/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...