Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 48(1): 117-130, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36018438

ABSTRACT

Adenosine, a purine nucleoside with neuromodulatory actions, is part of the purinergic signaling system (PSS). Caenorhabditis elegans is a free-living nematode found in soil, used in biological research for its advantages as an alternative experimental model. Since there is a lack of evidence of adenosine's direct actions and the PSS's participation in this animal, such an investigation is necessary. In this research, we aimed to test the effects of acute and chronic adenosine at 1, 5, and 10 mM on nematode's behaviors, morphology, survival after stress conditions, and on pathways related to the response to oxidative stress (DAF-16/FOXO and SKN-1) and genes products downstream these pathways (SOD-3, HSP-16.2, and GCS-1). Acute or chronic adenosine did not alter the worms' morphology analyzed by the worms' length, width, and area, nor interfered with reproductive behavior. On the other hand, acute and chronic adenosine modulated the defecation rate, pharyngeal pumping rate, and locomotion, in addition, to interacting with stress response pathways in C. elegans. Adenosine interfered in the speed and mobility of the worms analyzed. In addition, both acute and chronic adenosine presented modulatory effects on oxidative stress response signaling. Acute adenosine prevented the heat-induced-increase of DAF-16 activation and SOD-3 levels, while chronic adenosine per se induced DAF-16 activation and prevented heat-induced-increase of HSP-16.2 and SKN-1 levels. Together, these results indicate that exogenous adenosine has physiological and biochemical effects on C. elegans and describes possible purinergic signaling in worms.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Adenosine/pharmacology , Adenosine/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Longevity , Forkhead Transcription Factors/metabolism
2.
Platelets ; 27(8): 784-790, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27255146

ABSTRACT

Platelet-rich plasma (PRP) has received increasing attention and is widely used in clinical practice in order to stimulate human tissue healing. Contusions are very common injuries observed in sports and affect the function of the musculoskeletal system. This study investigated the effects of PRP on the oxidative damage determined by a contusion induced in gastrocnemius muscle of rats. PRP was injected intramuscularly immediately after injury and every 48 h, and the biochemical analysis was performed 1, 3, 5, or 7 days after the contusion onset in order to evaluate the changes characteristics of the healing process. The contusion increased the levels of oxidative stress markers such as thiobarbituric acid reactive substances and oxidized dichlorofluorescein both in skeletal muscle tissue and erythrocytes preparations, and PRP treatment significantly reduced these oxidative damage markers. Furthermore, the contusion decreased the cellular viability in the site of the lesion and PRP was effective in diminishing this effect. Moreover, PRP increased the levels of enzymatic antioxidants superoxide dismutase and catalase activities in the injured muscle, and also the non-protein thiols (-SH) group levels in erythrocytes. In conclusion PRP, in the form that was used in this study, was able to modulate the oxidative damage determined by a classical skeletal muscle injury possibly by reducing the impairment of myocytes mitochondrial function and improving their endogenous antioxidant defense systems.


Subject(s)
Contusions/metabolism , Contusions/therapy , Muscle, Skeletal/metabolism , Oxidative Stress , Platelet-Rich Plasma , Animals , Antioxidants/metabolism , Biomarkers , Case-Control Studies , Contusions/pathology , Disease Models, Animal , Lipid Peroxidation , Male , Mitochondria/drug effects , Mitochondria/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Oxidation-Reduction , Oxidative Stress/drug effects , Rats , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...