Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928403

ABSTRACT

Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.


Subject(s)
Vaccines, Virus-Like Particle , Humans , Vaccines, Virus-Like Particle/immunology , Nanoparticles/chemistry , Animals , Virion/chemistry , Drug Delivery Systems/methods
2.
Bioengineering (Basel) ; 9(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36421114

ABSTRACT

Virus-like particles (VLPs) are nanoplatforms comprised of one or more viral proteins with the capacity to self-assemble without viral genetic material. VLPs arise as promising nanoparticles (NPs) that can be exploited as vaccines, as drug delivery vehicles or as carriers of imaging agents. Engineered antibody constructs, namely single-chain variable fragments (scFv), have been explored as relevant molecules to direct NPs to their target. A vector containing the scFv of an antibody, aimed at the human epidermal growth factor receptor 2 (HER2) and fused to the human immunodeficiency virus (HIV) protein gp41, was previously constructed. The work herein describes the early results concerning the production and the characterization of HIV-1-based VLPs expressing this protein, which could function as potential non-toxic tools for transporting drugs and/or imaging agents.

3.
Front Cell Infect Microbiol ; 12: 997875, 2022.
Article in English | MEDLINE | ID: mdl-36275021

ABSTRACT

New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.


Subject(s)
HIV-1 , Nanoparticles , Humans , HIV-1/genetics
4.
J Pediatr Endocrinol Metab ; 35(11): 1448-1452, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35918792

ABSTRACT

Type 1 pseudohypoaldosteronism (PHA-1) is a rare genetic syndrome of unresponsiveness to aldosterone and presents in the neonatal period with hyperkalemia, hyponatremia and metabolic acidosis. The mortality rate can be high and multidisciplinary team is needed for optimal management and adequate growth and development of these patients. Many genotype-phenotype correlations remain uncertain, and the description of the evolution of cases can increase scientific knowledge about the psychomotor development and severity of the different mutations. We report the follow-up for the last 10 years of a patient, with previously unrecognized genetic findings identified. In addition, we reviewed the literature and compared it with other pediatric cases.


Subject(s)
Hyperkalemia , Hyponatremia , Pseudohypoaldosteronism , Humans , Pseudohypoaldosteronism/genetics , Aldosterone , Genetic Association Studies
5.
Adv Cancer Res ; 148: 171-199, 2020.
Article in English | MEDLINE | ID: mdl-32723563

ABSTRACT

Cancer is a complex disease with high incidence and mortality rates. The important role played by the tumor microenvironment in regulating oncogenesis, tumor growth, and metastasis is by now well accepted in the scientific community. SPARC is known to participate in tumor-stromal interactions and impact cancer growth in ambiguous ways, which either enhance or suppress cancer aggressiveness, in a context-dependent manner. p53 transcription factor, a well-established tumor suppressor, has been reported to promote tumor growth in certain situations, such as hypoxia, thus displaying a duality in its action. Although both proteins are being tested in clinical trials, the synergistic relation between them is yet to be explored in clinical practice. In this review, we address the controversial roles of SPARC and p53 as double agents in cancer, briefly summarizing the interaction found between these two molecules and its importance in cancer.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Osteonectin/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Humans , Neoplasms/genetics , Osteonectin/genetics , Tumor Suppressor Protein p53/genetics
6.
Sensors (Basel) ; 20(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545686

ABSTRACT

The accurate diagnosis of bacterial infections is of critical importance for effective treatment decisions. Due to the multietiologic nature of most infectious diseases, multiplex assays are essential for diagnostics. However, multiplexability in nucleic acid amplification-based methods commonly resorts to multiple primers and/or multiple reaction chambers, which increases analysis cost and complexity. Herein, a polymerase chain reaction (PCR) offer method based on a universal pair of primers and an array of specific oligonucleotide probes was developed through the analysis of the bacterial 16S ribosomal RNA gene. The detection system consisted of DNA hybridization over an array of magnetoresistive sensors in a microfabricated biochip coupled to an electronic reader. Immobilized probes interrogated single-stranded biotinylated amplicons and were obtained using asymmetric PCR. Moreover, they were magnetically labelled with streptavidin-coated superparamagnetic nanoparticles. The benchmarking of the system was demonstrated to detect five major bovine mastitis-causing pathogens: Escherichia coli, Klebsiella sp., Staphylococcus aureus, Streptococcus uberis, and Streptococcus agalactiae. All selected probes proved to specifically detect their respective amplicon without significant cross reactivity. A calibration curve was performed for S. agalactiae, which demonstrates demonstrating a limit of detection below 30 fg/µL. Thus, a sensitive and specific multiplex detection assay was established, demonstrating its potential as a bioanalytical device for point-of-care applications.


Subject(s)
Bacteria/isolation & purification , Mastitis, Bovine/diagnosis , Point-of-Care Systems , Animals , Bacteria/classification , Cattle , DNA, Bacterial/genetics , Female , Mastitis, Bovine/microbiology , Oligonucleotide Probes , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity
7.
Article in English | MEDLINE | ID: mdl-31417901

ABSTRACT

Bovine mastitis is an inflammation of the mammary gland caused by a multitude of pathogens with devastating consequences for the dairy industry. Global annual losses are estimated to be around €30 bn and are caused by significant milk losses, poor milk quality, culling of chronically infected animals, and occasional deaths. Moreover, mastitis management routinely implies the administration of antibiotics to treat and prevent the disease which poses serious risks regarding the emergence of antibiotic resistance. Conventional diagnostic methods based on somatic cell counts (SCC) and plate-culture techniques are accurate in identifying the disease, the respective infectious agents and antibiotic resistant phenotypes. However, pressure exists to develop less lengthy approaches, capable of providing on-site information concerning the infection, and in this way, guide, and hasten the most adequate treatment. Biosensors are analytical tools that convert the presence of biological compounds into an electric signal. Benefitting from high signal-to-noise ratios and fast response times, when properly tuned, they can detect the presence of specific cells and cell markers with high sensitivity. In combination with microfluidics, they provide the means for development of automated and portable diagnostic devices. Still, while biosensors are growing at a fast pace in human diagnostics, applications for the veterinary market, and specifically, for the diagnosis of mastitis remain limited. This review highlights current approaches for mastitis diagnosis and describes the latest outcomes in biosensors and lab-on-chip devices with the potential to become real alternatives to standard practices. Focus is given to those technologies that, in a near future, will enable for an on-farm diagnosis of mastitis.

8.
Anal Bioanal Chem ; 411(9): 1839-1862, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30783712

ABSTRACT

The growing need for biological information at the single cell level has driven the development of improved cytometry technologies. Flow cytometry is a particularly powerful method that has evolved over the past few decades. Flow cytometers have become essential instruments in biomedical research and routine clinical tests for disease diagnosis, prognosis, and treatment monitoring. However, the increasing number of cellular parameters unveiled by genomic, proteomic, and metabolomic data platforms demands an augmented multiplexability. Also, the need for identification and quantification of relevant biomarkers at low levels requires outstanding analytical sensitivity and reliability. In addition, growing awareness of the advantages associated with miniaturization of analytical devices is pushing forward the progress in integrated and compact, microfluidic-based devices at the point-of-care. In this context, novel types of flow cytometers are emerging during the search to tackle these challenges. Notwithstanding the relevance of other promising alternatives to standard optical flow cytometry (e.g., mass cytometry, various optical and electrical microcytometers), this report focuses on a recent microcytometric technology based on magnetic sensors and magnetic particles integrated into microfluidic structures for dynamic bioanalysis of fluid samples-magnetic flow cytometry. Its concept, main developments, targeted applications, as well as the challenges and trends behind this technology are presented and discussed. Graphical abstract ᅟ "Kindly advise whether there is online abstract figure for this paper. If so, kindly resupply.The graphical abstract is correctly supplied.


Subject(s)
Flow Cytometry/methods , Magnetics , Humans , Lab-On-A-Chip Devices , Limit of Detection , Point-of-Care Systems , Reproducibility of Results
9.
ACS Nano ; 11(11): 10659-10664, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29077390

ABSTRACT

Portable analytical devices are notably gaining relevance in the panorama of urgent testing. Such devices have the potential to play an important role as easy-to-handle tools in critical situations. Epidemic infectious disease agents (e.g., Ebola virus, Coronavirus, Zika virus) could be controlled more easily by testing travelers on-site at the country borders to prevent outbreaks from spreading. The increasing incidence of hospital-acquired infections caused by antibiotic resistant pathogens could be minimized by point-of-care microbial analysis as well as rapid screening tests of bacteria resistance. The threat of bioterrorism using novel unknown bioweapons has never been so high, thus, in-the-field early identification of the biological agent is crucial for triggering a coordinated response. Food allergies are a growing public health concern-allergic reactions can result in anaphylactic shock, which can prove fatal in minutes-thus, the ability to test foods for common allergens, rapidly and locally, before ingestion, would improve food safety for those with allergies. Lab-on-chip devices are becoming widely available for diverse applications and are becoming increasingly affordable. However, to shrink in price and size simultaneously, some trade-offs must be made. In this Perspective, we present considerations about product specifications, design concepts, and application scenarios.


Subject(s)
Epidemics/prevention & control , Lab-On-A-Chip Devices/trends , Point-of-Care Systems/trends , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Ebolavirus/isolation & purification , Ebolavirus/pathogenicity , Humans , Zika Virus/isolation & purification , Zika Virus/pathogenicity
10.
Anal Chem ; 86(9): 4340-7, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24716740

ABSTRACT

Microfluidic paper-based analytical devices (µPADs) fabricated by wax-printing are suitable platforms for the development of simple and affordable molecular diagnostic assays for infectious diseases, especially in resource-limited settings. Paper devices can be modified for biological assays by adding appropriate reagents to the test areas. For this purpose, the use of affinity immobilization strategies can be a good solution for bioactive paper fabrication. This paper describes a methodology to capture labeled-DNA strands and hybrids on paper via the anchoring of antibodies with a fusion protein that combines a family 3 carbohydrate binding module (CBM) from Clostridium thermocellum, with high affinity to cellulose, and the ZZ fragment of the staphyloccocal protein A, which recognizes IgG antibodies via their Fc portion. Antibodies immobilized via CBM-ZZ were able to capture appropriately labeled (biotin, fluorescein) DNA strands and DNA hybrids. The ability of an antibody specific to biotin to discriminate complementary from noncomplementary, biotin-labeled targets was demonstrated in both spot and microchannel assays. Hybridization was detected by fluorescence emission of the fluorescein-labeled DNA probe. The efficiency of the capture of labeled-DNA by antibodies immobilized on paper via the CBM-ZZ construct was significantly higher when compared with a physical adsorption method where antibodies were simply spotted on paper without the intermediation of other molecules. The experimental proof of concept of wax-printed µPADs functionalized with CBM-ZZ for DNA detection at room temperature presented in this study constitutes an important step toward the development of easy to use and affordable molecular diagnostic tests.


Subject(s)
Antibodies/chemistry , Carbohydrates/chemistry , DNA/chemistry , Paper , Base Sequence , Binding Sites , Nucleic Acid Hybridization
11.
Trends Biotechnol ; 30(11): 566-74, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22921755

ABSTRACT

G protein-coupled receptors (GPCRs) play a key role in many physiological or disease-related processes and for this reason are favorite targets of the pharmaceutical industry. Although ~30% of marketed drugs target GPCRs, their potential remains largely untapped. The discovery of new leads calls for the screening of thousands of compounds with high-throughput cell-based assays. Although microtiter plate-based high-throughput screening platforms are well established, microarray and microfluidic technologies hold potential for miniaturization, automation, and biosensor integration that may well redefine the format of GPCR screening assays. This paper reviews the latest research efforts directed to bringing microarray and microfluidic technologies into the realm of GPCR-based, live-cell screening assays.


Subject(s)
Biosensing Techniques/methods , Drug Evaluation, Preclinical/methods , Miniaturization/methods , Receptors, Opioid/metabolism , Automation/methods , High-Throughput Screening Assays/methods , Microarray Analysis/methods , Microfluidics/methods
12.
J Biotechnol ; 151(1): 130-6, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21087644

ABSTRACT

Electroporation has been considered one of the most efficient non-viral based methods to deliver genes regardless of frequently observed high cell mortality. In this study we used a microporation technique to optimise the delivery of plasmid DNA encoding green fluorescence protein (GFP) to human bone marrow mesenchymal stem cells (BM-MSC). Using resuspension buffer (RB) and as low as 1.5 x 105 cells and 1 µg of DNA, we achieved 40% of cells expressing the transgene, with cell recovery and cell viabilities of 85% and 90%, respectively. An increase in DNA amount did not significantly increase the number of transfected cells but clearly reduced cell recovery. A face-centered composite design was used to unveil the conditions giving rise to optimal plasmid delivery efficiencies when using a sucrose based microporation buffer (SBB). The BM-MSC proliferation kinetics were mainly affected by the presence of plasmid and not due to the microporation process itself although no effect was observed on their immunophenotypic characteristics and differentiative potential. Based on the data shown herein microporation demonstrated to be a reliable and efficient method to genetically modify hard-to-transfect cells giving rise to the highest levels of cell survival reported so far along with superior gene delivery efficiencies.


Subject(s)
Bone Marrow Cells/physiology , Electroporation/methods , Gene Transfer Techniques , Mesenchymal Stem Cells/physiology , Analysis of Variance , Cell Differentiation , Cell Division , DNA/chemistry , DNA/metabolism , Humans , Sucrose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...