Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Parasite Immunol ; 46(5): e13037, 2024 May.
Article in English | MEDLINE | ID: mdl-38720446

ABSTRACT

The treatment for visceral leishmaniasis (VL) causes toxicity in patients, entails high cost and/or leads to the emergence of resistant strains. No human vaccine exists, and diagnosis presents problems related to the sensitivity or specificity of the tests. Here, we tested two phage clones, B1 and D11, which were shown to be protective against Leishmania infantum infection in a murine model as immunotherapeutics to treat mice infected with this parasite species. The phages were used alone or with amphotericin B (AmpB), while other mice received saline, AmpB, a wild-type phage (WTP) or WTP/AmpB. Results showed that the B1/AmpB and D11/AmpB combinations induced polarised Th1-type cellular and humoral responses, which were primed by high levels of parasite-specific IFN-γ, IL-12, TNF-α, nitrite and IgG2a antibodies, which reflected in significant reductions in the parasite load in distinct organs of the animals when analyses were performed 1 and 30 days after the treatments. Reduced organic toxicity was also found in these animals, as compared with the controls. In conclusion, preliminary data suggest the potential of the B1/AmpB and D11/AmpB combinations as immunotherapeutics against L. infantum infection.


Subject(s)
Amphotericin B , Antibodies, Protozoan , Immunotherapy , Leishmania infantum , Leishmaniasis, Visceral , Mice, Inbred BALB C , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/drug therapy , Animals , Amphotericin B/therapeutic use , Amphotericin B/administration & dosage , Antibodies, Protozoan/blood , Leishmania infantum/immunology , Leishmania infantum/drug effects , Mice , Immunotherapy/methods , Female , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Immunoglobulin G/blood , Parasite Load , Disease Models, Animal , Cell Surface Display Techniques , Cytokines/metabolism , Th1 Cells/immunology
2.
Appl Microbiol Biotechnol ; 106(12): 4627-4641, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35759035

ABSTRACT

Tegumentary leishmaniasis (TL) is a disease of high severity and incidence in Brazil, and Leishmania braziliensis is its main etiological agent. The inefficiency of control measures, such as high toxicity and costs of current treatments and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present work developed a gene encoding multiple T-cell (CD4+/CD8+) epitope, derived from conserved proteins found in Leishmania species and associated with TL, to generate a chimeric protein (rMEP/TL) and compose a vaccine formulation. For this, six T-cell epitopes were selected by immunoinformatics approaches from proteins present in the amastigote stage and associated with host-parasite interactions. The following formulations were then tested in an L. braziliensis murine infection model: rMEP/TL in saline or associated with MPLA-PHAD®. Our data revealed that, after immunization (three doses; 14-day intervals) and subsequent challenging, rMEP/TL and rMEP/TL + MPLA-vaccinated mice showed an increased production of key immunological biomarkers of protection, such as IgG2a, IgG2a/IgG1, NO, CD4+, and CD8+ T-cells with IFN-γ and TNF-α production, associated with a reduction in CD4+IL-10+ and CD8+IL-10+ T-cells. Vaccines also induced the development of central (CD44highCD62Lhigh) and effector (CD44highCD62Llow) memory of CD4+ and CD8+ T-cells. These findings, associated with the observation of lower rates of parasite burdens in the vaccinated groups, when compared to the control groups, suggest that immunization with rMEP/TL and, preferably, associated with an adjuvant, may be considered an effective tool to prevent TL. KEY POINTS: • Rational design approaches for vaccine development. • Central and effector memory of CD4+ and CD8+ T-cells. • Vaccine comprised of rMEP/TL plus MPLA as an effective tool to prevent TL.


Subject(s)
Leishmaniasis Vaccines , Leishmaniasis , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte/genetics , Immunoglobulin G , Interleukin-10/metabolism , Leishmaniasis/prevention & control , Leishmaniasis Vaccines/genetics , Mice , Mice, Inbred BALB C
3.
Methods Mol Biol ; 2410: 463-480, 2022.
Article in English | MEDLINE | ID: mdl-34914063

ABSTRACT

Visceral leishmaniasis (VL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. Systemic VL is fatal if untreated and there are no prophylactic human vaccines available. Several studies suggest that Th1 cell-mediated immunity plays a major role in protecting against VL. In this chapter we describe a method for designing recombinant chimera vaccines in silico based on the prediction of T cell epitopes within protein antigens identified as potential protective immunogens. Development of a recombinant chimera protein (RCP) vaccine using T cell epitope peptides identified from four Leishmania proteins is used as an exemplar of this method.


Subject(s)
Leishmaniasis Vaccines , Leishmaniasis, Visceral , Humans , Antigens, Protozoan/genetics , Epitopes, T-Lymphocyte , Leishmania/genetics , Leishmaniasis, Visceral/prevention & control , Peptides , Protozoan Proteins/genetics , T-Lymphocytes , Vaccines, Synthetic/genetics
4.
Methods Mol Biol ; 2410: 481-502, 2022.
Article in English | MEDLINE | ID: mdl-34914064

ABSTRACT

Leishmaniases are neglected diseases caused by Leishmania parasites and affect millions of people worldwide. The induction of protective immunity against infection by some species of Leishmania has stimulated the development of vaccine candidates against the disease. In this chapter we describe protocols for immunizing mice with a recombinant chimera vaccine containing selected epitopes that specifically stimulate a Th1-type immune response. We describe protocols for challenging mice with live Leishmania parasite and for measuring parameters of the immune response to vaccination and parasite infection, including the production of cytokines, nitric oxide, and IgG antibodies, and the contribution of CD4+ and CD8+ T cells. We also provide protocols for isolating mouse organs for cell culture and for quantifying parasite loads in unvaccinated control animals and in vaccine-protected animals. These protocols can form the basis of immunological studies of candidate Leishmania vaccines in the mouse, as a step toward further vaccine development for human use.


Subject(s)
Leishmania , Leishmaniasis Vaccines , Leishmaniasis , Animals , CD8-Positive T-Lymphocytes/immunology , Cytokines , Leishmaniasis/prevention & control , Leishmaniasis, Visceral , Mice , Mice, Inbred BALB C , Protozoan Proteins , Vaccine Development , Vaccines, Synthetic
5.
Parasit Vectors ; 10(1): 617, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29268793

ABSTRACT

BACKGROUND: The development of a vaccine for the prevention of visceral leishmaniasis (VL) still represents a significant unmet medical need. A human vaccine can be found if one takes into consideration that many people living in endemic areas of disease are infected but do not develop active VL, including those subjects with subclinical or asymptomatic infection. METHODS: In this study, a phage display was used to select phage-exposed peptides that were specific to immunoglobulin G (IgG) antibodies from asymptomatic and symptomatic VL patients, separating them from non-infected subjects. Phage clones presenting valid peptide sequences were selected and used as stimuli of peripheral blood mononuclear cells (PBMCs) obtained from both patients' groups and controls. Those with higher interferon-gamma (IFN-γ)/interleukin (IL)-10 ratios were further selected for vaccination tests. RESULTS: Among 17 evaluated clones, two were selected, B1 and D11, and used to immunize BALB/c mice in an attempt to further validate their in vivo protective efficacy against Leishmania infantum infection. Both clones induced partial protection against the parasite challenge, which was evidenced by the reduction of parasitism in the evaluated organs, a process mediated by a specific T helper (Th)1 immune response. CONCLUSIONS: To the best of our knowledge, this study is the first to use a rational strategy based on in vitro stimulation of human PBMCs with selected phage-displayed clones to obtain new immunogens against VL.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Leishmania infantum/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Vaccines/immunology , Protozoan Vaccines/isolation & purification , Th1 Cells/immunology , Animals , Humans , Immunoassay , Interferon-gamma/metabolism , Interleukin-10/metabolism , Leishmaniasis, Visceral/immunology , Mass Screening , Mice, Inbred BALB C , Peptide Library
6.
Vet Parasitol ; 238: 77-81, 2017 Apr 30.
Article in English | MEDLINE | ID: mdl-28385540

ABSTRACT

In the present study, Leishmania braziliensis enolase was cloned and the recombinant protein (rEnolase) was evaluated for the serodiagnosis of canine and human visceral leishmaniosis (VL). For the canine VL diagnosis, this study examined serum samples of Leishmania infantum-infected dogs, from non-infected animals living in endemic or non-endemic areas of leishmaniosis, as well as those from Leish-Tec®-vaccinated dogs and Trypanosoma cruzi or Ehrlichia canis experimentally infected animals. For the human VL diagnosis, this study analyzed serum samples from VL patients, from non-infected subjects living in endemic or non-endemic areas of leishmaniosis, as well as those from T. cruzi-infected patients. In the results, an indirect ELISA method using rEnolase showed diagnostic sensitivity and specificity values of 100% and 98.57%, respectively, for canine VL serodiagnosis, and of 100% and 97.87%, respectively, for human VL diagnosis. These results showed rEnolase with an improved diagnostic performance when compared to the recombinant A2 protein, the crude soluble Leishmania antigenic preparation, and the recombinant K39-based immunochromatographic test. In conclusion, preliminary results suggest that the detection of antibodies against rEnolase improves the serodiagnosis of human and canine visceral leishmaniosis.


Subject(s)
Dog Diseases/blood , Leishmania braziliensis/enzymology , Leishmaniasis, Cutaneous/veterinary , Phosphopyruvate Hydratase/blood , Serologic Tests/veterinary , Adult , Animals , Biomarkers , Cloning, Molecular , Dog Diseases/diagnosis , Dog Diseases/parasitology , Dogs , Female , Humans , Leishmaniasis, Cutaneous/blood , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Male , Middle Aged , Recombinant Proteins , Serologic Tests/methods , Young Adult
7.
Immunobiology ; 222(2): 251-260, 2017 02.
Article in English | MEDLINE | ID: mdl-27693018

ABSTRACT

In the present study, two proteins cloned from Leishmania braziliensis species, a hypothetical protein (LbHyp) and the eukaryotic initiation factor 5a (EiF5a), were evaluated to protect BALB/c mice against L. amazonensis infection. The animals were immunized with the antigens, either separately or in combination, using saponin as an immune adjuvant in both cases. Spleen cells from vaccinated and later infected mice produced significantly higher levels of protein and parasite-specific IFN-γ, IL-12, and GM-CSF, in addition to low levels of IL-4 and IL-10. Evaluating the parasite load by means of a limiting dilution technique and quantitative Real-Time PCR, vaccinated animals presented significant reductions in the parasite load in both infected tissues and organs, as well as lower footpad swelling, when compared to the control (saline and saponin) groups. The best results regarding the protection of the animals were achieved when the combined vaccine was administered into the animals. Protection was associated with an IFN-γ production against parasite antigens, which was mediated by both CD4+ and CD8+ T cells and correlated with antileishmanial nitrite production. In conclusion, data from the present study show that this polyprotein vaccine, which combines two L. braziliensis proteins, can induce protection against L. amazonensis infection.


Subject(s)
Antigens, Protozoan/immunology , Cross Reactions/immunology , Leishmania braziliensis/immunology , Leishmania mexicana/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Cutaneous/prevention & control , Peptide Initiation Factors/immunology , RNA-Binding Proteins/immunology , Animals , Antigens, Protozoan/chemistry , Cytokines/metabolism , Disease Models, Animal , Female , Host-Parasite Interactions/immunology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/parasitology , Mice , Parasite Load , Peptide Initiation Factors/chemistry , RNA-Binding Proteins/chemistry , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Eukaryotic Translation Initiation Factor 5A
8.
Rev Soc Bras Med Trop ; 49(4): 398-407, 2016.
Article in English | MEDLINE | ID: mdl-27598624

ABSTRACT

Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control; for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses; however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniques.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Leishmania/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Vaccines/immunology , Animals , Dogs , Humans , Leishmania/classification , Protozoan Proteins/immunology
9.
Rev. Soc. Bras. Med. Trop ; 49(4): 398-407, July-Aug. 2016. tab, graf
Article in English | LILACS | ID: lil-792794

ABSTRACT

Abstract: Visceral leishmaniasis (VL) is one of the most important tropical diseases worldwide. Although chemotherapy has been widely used to treat this disease, problems related to the development of parasite resistance and side effects associated with the compounds used have been noted. Hence, alternative approaches for VL control are desirable. Some methods, such as vector control and culling of infected dogs, are insufficiently effective, with the latter not ethically recommended. The development of vaccines to prevent VL is a feasible and desirable measure for disease control; for example, some vaccines designed to protect dogs against VL have recently been brought to market. These vaccines are based on the combination of parasite fractions or recombinant proteins with adjuvants that are able to induce cellular immune responses; however, their partial efficacy and the absence of a vaccine to protect against human leishmaniasis underline the need for characterization of new vaccine candidates. This review presents recent advances in control measures for VL based on vaccine development, describing extensively studied antigens, as well as new antigenic proteins recently identified using immuno-proteomic techniques.


Subject(s)
Humans , Animals , Dogs , Antibodies, Protozoan/immunology , Protozoan Vaccines/immunology , Leishmania/immunology , Leishmaniasis, Visceral/prevention & control , Antigens, Protozoan/immunology , Protozoan Proteins/immunology , Leishmania/classification
10.
Parasitol Int ; 65(6 Pt A): 728-736, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27425599

ABSTRACT

New therapeutics are urgently needed to treat visceral leishmaniasis (VL). Due to the fact that drug discovery is a long and expensive process, the development of delivery systems to carry old and toxic drugs could be considered, as well as the evaluation of new molecules that have already shown to present biological activity. In this context, the present study evaluated the in vitro and in vivo antileishmanial activity of an 8-hydroxyquinoline (8-HQN)-containing polymeric micelle (8-HQN/M) system against Leishmania infantum, the main causative agent of VL in the Americas. The experimental strategy used was based on the evaluation of the parasite load by a limiting-dilution technique in the spleen, liver, bone marrow and draining lymph nodes of the infected and treated animals, as well as by a quantitative PCR (qPCR) technique to also assess the splenic parasite load. The immune response developed was evaluated by the production of IFN-γ, IL-4, IL-10, IL-12 and GM-CSF cytokines, as well as by antileishmanial nitrite dosage and antibodies production. Hepatic and renal enzymes were also investigated to verify cellular injury as a result of treatments toxicity. In the results, 8-HQN/M-treated mice, when compared to the other groups: saline, free amphotericin B (AmpB, as a drug control), 8-HQN and B-8-HQN/M (as a micelle control) showed more significant reductions in their parasite burden in all evaluated organs. These animals also showed an antileishmanial Th1 immunity, which was represented by high levels of IFN-γ, IL-12, GM-CSF and nitrite, associated with a low production of IL-4 and IL-10 and anti-Leishmania IgG1 isotype antibodies. In addition, any hepatic or renal damage was found in these treated animals. In conclusion, 8-HQN/M was effective in treating L. infantum-infected BALB/c mice, and can be considered alone, or combined with other drugs, as an alternative treatment for VL.


Subject(s)
Antiparasitic Agents/therapeutic use , Drug Carriers/therapeutic use , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Oxyquinoline/therapeutic use , Amphotericin B/therapeutic use , Animals , Antibodies, Protozoan/blood , Female , Granulocyte-Macrophage Colony-Stimulating Factor/biosynthesis , Immunoglobulin G/blood , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Interleukin-12/biosynthesis , Interleukin-4/biosynthesis , Leishmania infantum/immunology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Micelles , Parasite Load
11.
Acta Trop ; 158: 220-230, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26976272

ABSTRACT

Vaccination can be considered the most cost-effective strategy to control neglected diseases, but nowadays there is not an effective vaccine available against leishmaniasis. In the present study, a vaccine based on the combination of the Leishmania-specific hypothetical protein (LiHyD) with saponin was tested in BALB/c mice against infection caused by Leishmania major and Leishmania braziliensis species. This antigen was firstly identified in Leishmania infantum and showed to be protective against infection of BALB/c mice using this parasite species. The immunogenicity of rLiHyD/saponin vaccine was evaluated, and the results showed that immunized mice produced high levels of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with rLiHyD, as well as by using L. major or L. braziliensis protein extracts. After challenge, vaccinated animals showed significant reductions in the infected footpad swellings, as well as in the parasite burden in the infection site, liver, spleen, and infected paws draining lymph nodes, when compared to those that were inoculated with the vaccine diluent (saline) or immunized with saponin. The immunization of rLiHyD without adjuvant was not protective against both challenges. The partial protection obtained by the rLiHyD/saponin vaccine was associated with a parasite-specific IL-12-dependent IFN-γ secretion, which was produced mainly by CD4(+) T cells. In these animals, a decrease in the parasite-mediated IL-4 and IL-10 responses, associated with the presence of high levels of LiHyD- and parasite-specific IgG2a isotype antibodies, were also observed. The present study showed that a hypothetical protein that was firstly identified in L. infantum, when combined to a Th1 adjuvant, was able to confer a cross-protection against highly infective stationary-phase promastigotes of two Leishmania species causing tegumentary leishmaniasis.


Subject(s)
Leishmania braziliensis/immunology , Leishmania infantum/immunology , Leishmania major/immunology , Leishmaniasis Vaccines/immunology , Animals , Antibodies, Protozoan/blood , Cytokines/biosynthesis , Female , Leishmaniasis/prevention & control , Mice , Mice, Inbred BALB C , T-Lymphocytes/immunology , Vaccination
12.
Vet Parasitol ; 215: 63-71, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26790739

ABSTRACT

Serological diagnostic tests for canine and human leishmaniasis present problems related with their sensitivity and/or specificity. Recently, an immunoproteomic approach performed with Leishmania infantum proteins identified new parasite antigens. In the present study, the diagnostic properties of two of these proteins, cytochrome c oxidase and IgE-dependent histamine-releasing factor, were evaluated for the serodiagnosis of canine visceral (CVL) and human tegumentary (HTL) leishmaniasis. For the CVL diagnosis, sera samples from non-infected dogs living in an endemic or non-endemic area of leishmaniasis, sera from asymptomatic or symptomatic visceral leishmaniasis (VL) dogs, from Leish-Tec(®)-vaccinated dogs, and sera from animals experimentally infected by Trypanosoma cruzi or Ehrlichia canis were used. For the HTL diagnosis, sera from non-infected subjects living in an endemic area of leishmaniasis, sera from active cutaneous or mucosal leishmaniasis patients, as well as those from T. cruzi-infected patients were employed. ELISA assays using the recombinant proteins showed both sensitivity and specificity values of 100% for the serodiagnosis of both forms of disease, with high positive and negative predictive values, showing better diagnostic properties than the parasite recombinant A2 protein or a soluble Leishmania antigen extract. In this context, the two new recombinant proteins could be considered to be used in the serodiagnosis of CVL and HTL.


Subject(s)
Dog Diseases/parasitology , Leishmania infantum/metabolism , Leishmaniasis, Cutaneous/veterinary , Animals , Cloning, Molecular , Dog Diseases/diagnosis , Dogs , Gene Expression Regulation , Immunoassay , Leishmania infantum/genetics , Leishmania infantum/immunology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitology , Protozoan Proteins , Recombinant Proteins , Sensitivity and Specificity , Serologic Tests
13.
Acta Trop ; 154: 73-81, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26593442

ABSTRACT

The present study aimed to evaluate a new Leishmania-specific hypothetical protein, LiHyT, as a vaccine candidate against VL. The immunogenicity of the recombinant protein (rLiHyT) plus saponin was evaluated in BALB/c mice. In the results, it is shown that rLiHyT plus saponin vaccinated mice produced high levels of IFN-γ, IL-12, and GM-CSF after in vitro stimulation of spleen cells using both rLiHyT and Leishmania infantum SLA. The protective efficacy was evaluated after subcutaneous challenge with stationary promastigotes of L. infantum. Immunized and infected mice, when compared to the controls, showed significant reductions in the number of parasites in the liver, spleen, bone marrow, and in the paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD4(+) T cells, with a minor contribution of CD8(+) T cells. In these mice, a decrease in the parasite-mediated IL-4 and IL-10 responses, as well as a predominance of LiHyT- and parasite-specific IgG2a isotype antibodies, were also observed. The present study showed that a new Leishmania-specific protein, when combined with a Th1-type adjuvant, presents potential to be used as a vaccine against VL.


Subject(s)
Antigens, Protozoan/immunology , Leishmania infantum/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Vaccines/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Immunoglobulin G/blood , Interleukin-4/biosynthesis , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , Saponins/immunology
15.
PLoS One ; 10(9): e0137683, 2015.
Article in English | MEDLINE | ID: mdl-26367128

ABSTRACT

In the present study, two Leishmania infantum hypothetical proteins present in the amastigote stage, LiHyp1 and LiHyp6, were combined with a promastigote protein, IgE-dependent histamine-releasing factor (HRF); to compose a polyproteins vaccine to be evaluated against L. infantum infection. Also, the antigenicity of the three proteins was analyzed, and their use for the serodiagnosis of canine visceral leishmaniasis (CVL) was evaluated. The LiHyp1, LiHyp6, and HRF DNA coding sequences were cloned in prokaryotic expression vectors and the recombinant proteins were purified. When employed in ELISA assays, all proteins were recognized by sera from visceral leishmaniasis (VL) dogs, and presented no cross-reactivity with either sera from dogs vaccinated with a Brazilian commercial vaccine, or sera of Trypanosoma cruzi-infected or Ehrlichia canis-infected animals. In addition, the antigens were not recognized by antibodies from non-infected animals living in endemic or non-endemic areas for leishmaniasis. The immunogenicity and protective efficacy of the three proteins administered in the presence of saponin, individually or in combination (composing a polyproteins vaccine), were evaluated in a VL murine model: BALB/c mice infected with L. infantum. Spleen cells from mice inoculated with the individual proteins or with the polyproteins vaccine plus saponin showed a protein-specific production of IFN-γ, IL-12, and GM-CSF after an in vitro stimulation, which was maintained after infection. These animals presented significant reductions in the parasite burden in different evaluated organs, when compared to mice inoculated with saline or saponin. The decrease in parasite burden was associated with an IL-12-dependent production of IFN-γ against parasite total extracts (produced mainly by CD4+ T cells), correlated to the induction of parasite proteins-driven NO production. Mice inoculated with the recombinant protein-based vaccines showed also high levels of parasite-specific IgG2a antibodies. The polyproteins vaccine administration induced a more pronounced Th1 response before and after challenge infection than individual vaccines, which was correlated to a higher control of parasite dissemination to internal organs.


Subject(s)
Antigens, Protozoan/therapeutic use , Leishmania infantum/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Proteins/immunology , Protozoan Vaccines/therapeutic use , Animals , Cytokines/metabolism , Dogs , Female , Immunity, Humoral , Leishmania infantum/growth & development , Mice, Inbred BALB C , Nitrites/metabolism , Parasite Load
16.
Parasitology ; 142(10): 1335-47, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26099574

ABSTRACT

Two mimotopes of Leishmania infantum identified by phage display were evaluated as vaccine candidates in BALB/c mice against Leishmania amazonensis infection. The epitope-based immunogens, namely B10 and C01, presented as phage-fused peptides; were used without association of a Th1 adjuvant, and they were administered isolated or in combination into animals. Both clones showed a specific production of interferon-gamma (IFN-γ), interleukin-12 (IL-12) and granulocyte/macrophage colony-stimulating factor (GM-CSF) after in vitro spleen cells stimulation, and they were able to induce a partial protection against infection. Significant reductions of parasite load in the infected footpads, liver, spleen, bone marrow and paws' draining lymph nodes were observed in the immunized mice, in comparison with the control groups (saline, saponin, wild-type and non-relevant clones). Protection was associated with an IL-12-dependent production of IFN-γ, mediated mainly by CD8(+) T cells, against parasite proteins. Protected mice also presented low levels of IL-4 and IL-10, as well as increased levels of parasite-specific IgG2a antibodies. The association of both clones resulted in an improved protection in relation to their individual use. More importantly, the absence of adjuvant did not diminish the cross-protective efficacy against Leishmania spp. infection. This study describes for the first time two epitope-based immunogens selected by phage display technology against L. infantum infected dogs sera, which induced a partial protection in BALB/c mice infected with L. amazonensis.


Subject(s)
Bacteriophages/immunology , Epitopes/immunology , Leishmania infantum/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis/prevention & control , Protozoan Vaccines/immunology , Animals , Cells, Cultured , Female , Mice , Mice, Inbred BALB C
17.
Exp Parasitol ; 153: 180-90, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25845753

ABSTRACT

The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the BALB/c mice proved to be similar when comparing the F2 and F4 fractions with a known Th1 adjuvant (saponin), though animals vaccinated with saponin did present a slight to moderate inflammatory edema on their hind footpads. In conclusion, the F2 and F4 fractions appear to induce a Th1-type immune response and, in this context, they could be evaluated in association with other protective antigens against Leishmania, as well as in other disease models.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Agaricus/chemistry , Antigens, Protozoan/administration & dosage , Leishmaniasis, Visceral/prevention & control , Polysaccharides/administration & dosage , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Drug Evaluation, Preclinical , Female , Humans , Interferon-gamma/immunology , Interleukin-10/immunology , Interleukin-4/immunology , Leishmania infantum/genetics , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Polysaccharides/immunology , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Spleen/drug effects , Spleen/immunology , Th1 Cells/immunology
18.
PLoS One ; 9(10): e110014, 2014.
Article in English | MEDLINE | ID: mdl-25333662

ABSTRACT

BACKGROUND: The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. METHODOLOGY/MAIN FINDINGS: Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. CONCLUSIONS/SIGNIFICANCE: This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL.


Subject(s)
Antigens, Protozoan/immunology , Leishmania infantum/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/prevention & control , Animals , Disease Models, Animal , Dogs , Epitopes , Leishmaniasis, Visceral/parasitology , Mice
19.
Article in English | MEDLINE | ID: mdl-24194781

ABSTRACT

The development of new and cost-effective alternative therapeutic strategies to treat leishmaniasis has become a high priority. In the present study, the antileishmanial activity of Strychnos pseudoquina St. Hil. was investigated and pure compounds that presented this biological effect were isolated. An ethyl acetate extract was prepared, and it proved to be effective against Leishmania amazonensis. A bioactivity-guided fractionation was performed, and two flavonoids were identified, quercetin 3-O-methyl ether and strychnobiflavone, which presented an effective antileishmanial activity against L. amazonensis, and studies were extended to establish their minimum inhibitory concentrations (IC50), their leishmanicidal effects on the intra-macrophage Leishmania stage, as well as their cytotoxic effects on murine macrophages (CC50), and in O+ human red blood cells. The data presented in this study showed the potential of an ethyl acetate extract of S. pseudoquina, as well as two flavonoids purified from it, which can be used as a therapeutic alternative on its own, or in association with other drugs, to treat disease evoked by L. amazonensis.

SELECTION OF CITATIONS
SEARCH DETAIL
...