Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Microbiol ; 74(10): 1216-1225, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28721658

ABSTRACT

Bacterial endosymbionts are common in all insects, and symbiosis has played an integral role in ant evolution. Atta sexdens rubropilosa leaf-cutting ants cultivate their symbiotic fungus using fresh leaves. They need to defend themselves and their brood against diseases, but they also need to defend their obligate fungus gardens, their primary food source, from infection, parasitism, and usurpation by competitors. This study aimed to characterize the microbial communities in whole workers and different tissues of A. sexdens rubropilosa queens using Ion Torrent NGS. Our results showed that the microbial community in the midgut differs in abundance and diversity from the communities in the postpharyngeal gland of the queen and in whole workers. The main microbial orders in whole workers were Lactobacillales, Clostridiales, Enterobacteriales, Actinomycetales, Burkholderiales, and Bacillales. In the tissues of the queens, the main orders were Burkholderiales, Clostridiales, Syntrophobacterales, Lactobacillales, Bacillales, and Actinomycetales (midgut) and Entomoplasmatales, unclassified γ-proteobacteria, and Actinomycetales (postpharyngeal glands). The high abundance of Entomoplasmatales in the postpharyngeal glands (77%) of the queens was an unprecedented finding. We discuss the role of microbial communities in different tissues and castes. Bacteria are likely to play a role in nutrition and immune defense as well as helping antimicrobial defense in this ant species.


Subject(s)
Ants/microbiology , Microbiota , Animals , Biodiversity , Metagenome , Metagenomics , Organ Specificity , Phylogeny , RNA, Ribosomal, 16S/genetics
2.
Curr Microbiol ; 74(5): 589-597, 2017 May.
Article in English | MEDLINE | ID: mdl-28261755

ABSTRACT

This study focuses on the weaver ant, Camponotus textor, Forel which occurs in some areas of the Brazilian Cerrado and Atlantic Forest, and its symbionts: Blochmannia, an obligate symbiont of Camponotus, and Wolbachia, known for causing reproductive alterations in their hosts. The main goal of this study was to investigate the presence, frequency of occurrence, and diversity of Wolbachia and Blochmannia strains in C. textor colonies. We found high infection rates (100%) and the occurrence of at least two distinct strains of Blochmannia (H_1 or H_7) in the same species. The observed haplotype variation within a single species may result from the high mutation rate of the symbiont. Similarly, the Wolbachia was found in all colonies with different rates of infections and a new strain (supergroup A) was deposited in the MLST database. The diversity found in the present study shows that there is still much to explore to understand about these symbiotic interactions.


Subject(s)
Ants/microbiology , Bacteria , Bacterial Physiological Phenomena , Symbiosis , Animals , Bacteria/classification , Bacteria/genetics , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Wolbachia/classification , Wolbachia/genetics
3.
Mol Phylogenet Evol ; 51(3): 427-37, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19041407

ABSTRACT

Leafcutting ants of the genus Atta are the most conspicuous members of the tribe Attini, the fungus-growing ants. Atta species have long attracted the attention of naturalists, and have since become a common model system for the study of complex insect societies as well as for the study of coevolutionary dynamics due to their numerous interactions with fungi and other microbes. Nevertheless, systematics and taxonomy of the 15 species in the genus Atta have proven challenging, due in part to the extreme levels of worker polymorphism these species display, leading to disagreements about the validity of as many as five different subgenera and calling into question the monophyly of the genus. Here, we use DNA sequence information from fragments of three mitochondrial genes (COI, tRNA leucine and COII) and one nuclear gene (EF1-alphaF1), totaling 1070 base pairs, to reconstruct the phylogenetic relationships of Atta species using maximum parsimony, maximum likelihood and Bayesian inference techniques. Our results provide support for monophyly of the genus Atta, and suggest that the genus is divided into four monophyletic groups, which correspond to four of the five previously erected Atta subgenera: Atta sensu stricto and Archeatta, each with species composition identical to earlier proposals; Neoatta and Epiatta, with major differences in species composition from earlier proposals. The current geographic ranges of these species suggest that the historical separation of South America from Central and North America has played a role in speciation within this genus.


Subject(s)
Ants/genetics , Evolution, Molecular , Phylogeny , Animals , Ants/classification , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genes, Insect , Genetic Speciation , Geography , Likelihood Functions , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
4.
Genome Res ; 13(12): 2725-35, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14613979

ABSTRACT

To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged.


Subject(s)
Computational Biology/methods , DNA, Complementary/analysis , DNA, Complementary/physiology , DNA, Plant/analysis , DNA, Plant/physiology , Expressed Sequence Tags , Saccharum/genetics , Saccharum/physiology , Computational Biology/statistics & numerical data , DNA, Complementary/classification , DNA, Plant/classification , Gene Expression Regulation, Plant , Gene Library , Molecular Sequence Data , Organ Specificity/genetics , Peptides/classification , Peptides/genetics , Peptides/physiology , Plant Proteins/classification , Plant Proteins/genetics , Plant Proteins/physiology , Polymorphism, Genetic/genetics , Protein Structure, Tertiary/genetics , Saccharum/growth & development , Sequence Analysis, DNA/methods , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...