Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 22(1): e51227, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33369847

ABSTRACT

Biosafety is a major challenge for developing for synthetic organisms. An early focus on application and their context could assist with the design of appropriate genetic safeguards.


Subject(s)
Containment of Biohazards , Synthetic Biology , Technology
2.
J Biomed Semantics ; 6: 39, 2015.
Article in English | MEDLINE | ID: mdl-26500754

ABSTRACT

BACKGROUND: Semantic web technologies have a tremendous potential for the integration of heterogeneous data sets. Therefore, an increasing number of widely used biological resources are becoming available in the RDF data model. There are however, no tools available that provide structural overviews of these resources. Such structural overviews are essential to efficiently query these resources and to assess their structural integrity and design, thereby strengthening their use and potential. RESULTS: Here we present RDF2Graph, a tool that automatically recovers the structure of an RDF resource. The generated overview allows to create complex queries on these resources and to structurally validate newly created resources. CONCLUSION: RDF2Graph facilitates the creation of complex queries thereby enabling access to knowledge stored across multiple RDF resources. RDF2Graph facilitates creation of high quality resources and resource descriptions, which in turn increases usability of the semantic web technologies.

3.
BMC Genomics ; 16: 34, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25649146

ABSTRACT

BACKGROUND: The human pathogen Mycobacterium tuberculosis has the capacity to escape eradication by professional phagocytes. During infection, M. tuberculosis resists the harsh environment of phagosomes and actively manipulates macrophages and dendritic cells to ensure prolonged intracellular survival. In contrast to other intracellular pathogens, it has remained difficult to capture the transcriptome of mycobacteria during infection due to an unfavorable host-to-pathogen ratio. RESULTS: We infected the human macrophage-like cell line THP-1 with the attenuated M. tuberculosis surrogate M. bovis Bacillus Calmette-Guérin (M. bovis BCG). Mycobacterial RNA was up to 1000-fold underrepresented in total RNA preparations of infected host cells. We employed microbial enrichment combined with specific ribosomal RNA depletion to simultaneously analyze the transcriptional responses of host and pathogen during infection by dual RNA sequencing. Our results confirm that mycobacterial pathways for cholesterol degradation and iron acquisition are upregulated during infection. In addition, genes involved in the methylcitrate cycle, aspartate metabolism and recycling of mycolic acids were induced. In response to M. bovis BCG infection, host cells upregulated de novo cholesterol biosynthesis presumably to compensate for the loss of this metabolite by bacterial catabolism. CONCLUSIONS: Dual RNA sequencing allows simultaneous capture of the global transcriptome of host and pathogen, during infection. However, mycobacteria remained problematic due to their relatively low number per host cell resulting in an unfavorable bacterium-to-host RNA ratio. Here, we use a strategy that combines enrichment for bacterial transcripts and dual RNA sequencing to provide the most comprehensive transcriptome of intracellular mycobacteria to date. The knowledge acquired into the pathogen and host pathways regulated during infection may contribute to a solid basis for the deployment of novel intervention strategies to tackle infection.


Subject(s)
Cholesterol/biosynthesis , Host-Pathogen Interactions/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/genetics , Animals , Cattle , Cholesterol/genetics , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Gene Expression Regulation, Bacterial/drug effects , High-Throughput Nucleotide Sequencing , Humans , Macrophages/microbiology , Mycobacterium bovis/pathogenicity , Mycobacterium tuberculosis/pathogenicity , Phagocytes/metabolism , Phagocytes/microbiology , Transcriptome/drug effects , Tuberculosis/microbiology
4.
J Biol Eng ; 7(1): 26, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24245660

ABSTRACT

BACKGROUND: The use of in silico simulations as a basis for designing artificial biological systems (and experiments to characterize them) is one of the tangible differences between Synthetic Biology and "classical" Genetic Engineering. To this end, synthetic biologists have adopted approaches originating from the traditionally non-biological fields of Nonlinear Dynamics and Systems & Control Theory. However, due to the complex molecular interactions affecting the emergent properties of biological systems, mechanistic descriptions of even the simplest genetic circuits (transcriptional feedback oscillators, bi-stable switches) produced by these methods tend to be either oversimplified, or numerically intractable. More comprehensive and realistic models can be approximated by constructing "toy" genetic circuits that provide the experimenter with some degree of control over the transcriptional dynamics, and allow for experimental set-ups that generate reliable data reflecting the intracellular biochemical state in real time. To this end, we designed two genetic circuits (basic and tunable) capable of exhibiting synchronized oscillatory green fluorescent protein (GFP) expression in small populations of Escherichia coli cells. The functionality of the basic circuit was verified microscopically. High-level visualizations of computational simulations were analyzed to determine whether the reliability and utility of a synchronized transcriptional oscillator could be enhanced by the introduction of chemically inducible repressors. RESULTS: Synchronized oscillations in GFP expression were repeatedly observed in chemically linked sub-populations of cells. Computational simulations predicted that the introduction of independently inducible repressors substantially broaden the range of conditions under which oscillations could occur, in addition to allowing the frequency of the oscillation to be tuned. CONCLUSIONS: The genetic circuits described here may prove to be valuable research tools for the study of synchronized transcriptional feedback loops under a variety of conditions and experimental set-ups. We further demonstrate the benefit of using abstract visualizations to discover subtle non-linear trends in complex dynamic models with large parameter spaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...