Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Bioenerg ; 1865(2): 149033, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38368917

ABSTRACT

Mitochondrial and thus cellular energetics are highly regulated both thermodynamically and kinetically. Cellular energetics is of prime importance in the regulation of cellular functions since it provides ATP for their accomplishment. However, cellular energetics is not only about ATP production but also about the ability to re-oxidize reduced coenzymes at a proper rate, such that the cellular redox potential remains at a level compatible with enzymatic reactions. However, this parameter is not only difficult to assess due to its dual compartmentation (mitochondrial and cytosolic) but also because it is well known that most NADH in the cells is bound to the enzymes. In this paper, we investigated the potential relevance of mitochondrial quinones redox state as a marker of mitochondrial metabolism and more particularly mitochondrial redox state. We were able to show that Q2 is an appropriate redox mediator to assess the mitochondrial quinone redox states. On isolated mitochondria, the mitochondrial quinone redox states depend on the mitochondrial substrate and the mitochondrial energetic state (phosphorylating or not phosphorylating). Last but not least, we show that the quinones redox state response allows to better understand the Krebs cycle functioning and respiratory substrates oxidation. Taken together, our results suggest that the quinones redox state is an excellent marker of mitochondrial metabolism.


Subject(s)
Benzoquinones , Mitochondria , Quinones , Oxidation-Reduction , Mitochondria/metabolism , Quinones/metabolism , Adenosine Triphosphate/metabolism
2.
Biochim Biophys Acta Bioenerg ; 1864(1): 148931, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36367492

ABSTRACT

Cancer cells display an altered energy metabolism, which was proposed to be the root of cancer. This early discovery was done by O. Warburg who conducted one of the first studies of tumor cell energy metabolism. Taking advantage of cancer cells that exhibited various growth rates, he showed that cancer cells display a decreased respiration and an increased glycolysis proportional to the increase in their growth rate, suggesting that they mainly depend on fermentative metabolism for ATP generation. Warburg's results and hypothesis generated controversies that are persistent to this day. It is thus of great importance to understand the mechanisms by which cancer cells can reversibly regulate the two pathways of their energy metabolism as well as the functioning of this metabolism in cell proliferation. In this review, we discuss of the origin of the decrease in cell respiratory rate, whether the Warburg effect is mandatory for an increased cell proliferation rate, the consequences of this effect on two major players of cell energy metabolism that are ATP and NADH, and the role of the microenvironment in the regulation of cellular respiration and metabolism both in cancer cell and in yeast.


Subject(s)
Glycolysis , Oxidative Phosphorylation , Humans , Mitochondria/metabolism , Cell Respiration , Adenosine Triphosphate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...