Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 551: 153-165, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821242

ABSTRACT

The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.

2.
Mol Cell Neurosci ; 124: 103806, 2023 03.
Article in English | MEDLINE | ID: mdl-36592801

ABSTRACT

Previously, we have shown that purinergic signalling is involved in the control of hyperosmotic-induced sympathoexcitation at the level of the PVN, via activation of P2X receptors. However, the source(s) of ATP that drives osmotically-induced increases in sympathetic outflow remained undetermined. Here, we tested the two competing hypotheses that either (1) higher extracellular ATP in PVN during salt loading (SL) is a result of a failure of ectonucleotidases to metabolize ATP; and/or (2) SL can stimulate PVN astrocytes to release ATP. Rats were salt loaded with a 2 % NaCl solution replacing drinking water up to 4 days, an experimental model known to cause a gradual increase in blood pressure and plasma osmolarity. Immunohistochemical assessment of glial-fibrillary acidic protein (GFAP) revealed increased glial cell reactivity in the PVN of rats after 4 days of high salt exposure. ATP and adenosine release measurements via biosensors in hypothalamic slices showed that baseline ATP release was increased 17-fold in the PVN while adenosine remained unchanged. Disruption of Ca2+-dependent vesicular release mechanisms in PVN astrocytes by virally-driven expression of a dominant-negative SNARE protein decreased the release of ATP. The activity of ectonucleotidases quantified in vitro by production of adenosine from ATP was increased in SL group. Our results showed that SL stimulates the release of ATP in the PVN, at least in part, from glial cells by a vesicle-mediated route and likely contributes to the neural control of circulation during osmotic challenges.


Subject(s)
Paraventricular Hypothalamic Nucleus , Sodium Chloride , Rats , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Sodium Chloride/metabolism , Sodium Chloride, Dietary/metabolism , Astrocytes/metabolism , Adenosine Triphosphate/metabolism , Adenosine
3.
Brain Res ; 1748: 147107, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32905820

ABSTRACT

High salt intake is able to evoke neuroendocrine and autonomic responses that include vasopressin release and sympathoexcitation resulting in increasing in the arterial blood pressure (BP). The C1 neurons are a specific population of catecholaminergic neurons located in the RVLM region and they control BP under homeostatic imbalance. Thus, here we hypothesized that the ablation of C1 neurons mitigate the high blood pressure induced by high-salt intake. To test this hypothesis, we injected anti-DßH-SAP saporin at the RVLM and monitored the BP in unanesthetized animals exposed to high salt intake of 2% NaCl solution for 7 days. The injection of anti-DßH-SAP into the RVLM depleted 80% of tyrosine hydroxylase-positive neurons (TH+ neurons) in the C1, 38% in the A5, and no significant reduction in the A1 region, when compared to control group (saline as vehicle). High salt intake elicited a significant increase in BP in the control group, while in the anti-DßH-SAP group the depletion of TH+ neurons prevents the salt-induced hypertension. Moreover, the low frequency component of systolic BP and pulse interval were increased by high-salt intake in control animals but not in anti-DßH-SAP group, which indirectly suggests that the increase in the BP is mediated by increase in sympathetic activity. In conclusion, our data show that hypertension induced by high-salt intake is dependent on C1 neurons.


Subject(s)
Blood Pressure/physiology , Hypertension/physiopathology , Medulla Oblongata/physiopathology , Neurons/pathology , Sodium Chloride, Dietary , Animals , Male , Rats , Rats, Wistar , Sympathetic Nervous System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...