Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 84(8): 3764-70, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22428526

ABSTRACT

The affinity of Cd(2+) toward carboxyl-terminated species covalently bound to monodisperse superparamagnetic iron oxide nanoparticles, Fe(3)O(4)(np)-COOH, was investigated in situ in aqueous electrolytes using rotating disk electrode techniques. Strong evidence that the presence of dispersed Fe(3)O(4)(np)-COOH does not affect the diffusion limiting currents was obtained using negatively and positively charged redox active species in buffered aqueous media (pH = 7) devoid of Cd(2+). This finding made it possible to determine the concentration of unbound Cd(2+) in solutions containing dispersed Fe(3)O(4)(np)-COOH, 8 and 17 nm in diameter, directly from the Levich equation. The results obtained yielded Cd(2+) adsorption efficiencies of ~20 µg of Cd/mg of Fe(3)O(4)(np)-COOH, which are among the highest reported in the literature employing ex situ methods. Desorption of Cd(2+) from Fe(3)O(4)(np)-COOH, as monitored by the same forced convection method, could be accomplished by lowering the pH, a process found to be highly reversible.


Subject(s)
Cadmium/chemistry , Ferric Compounds/chemistry , Magnetics , Metal Nanoparticles/chemistry , Adsorption , Carboxylic Acids/chemistry , Microscopy, Electron, Transmission , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...