Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Virulence ; 12(1): 601-614, 2021 12.
Article in English | MEDLINE | ID: mdl-33538224

ABSTRACT

Candida parapsilosis is an emergent opportunistic yeast among hospital settings that affects mainly neonates and immunocompromised patients. Its most remarkable virulence traits are the ability to adhere to prosthetic materials, as well as the formation of biofilm on abiotic surfaces. The Ndt80 transcription factor was identified as one of the regulators of biofilm formation by C. parapsilosis; however, its function in this process was not yet clarified. By knocking out NDT80 (CPAR2-213640) gene, or even just one single copy of the gene, we observed substantial alterations of virulence attributes, including morphogenetic changes, adhesion and biofilm growth profiles. Both ndt80Δ and ndt80ΔΔ mutants changed colony and cell morphologies from smooth, yeast-shaped to crepe and pseudohyphal elongated forms, exhibiting promoted adherence to polystyrene microspheres and notably, forming a higher amount of biofilm compared to wild-type strain. Interestingly, we identified transcription factors Ume6, Cph2, Cwh41, Ace2, Bcr1, protein kinase Mkc1 and adhesin Als7 to be under Ndt80 negative regulation, partially explaining the phenotypes displayed by the ndt80ΔΔ mutant. Furthermore, ndt80ΔΔ pseudohyphae adhered more rapidly and were more resistant to murine macrophage attack, becoming deleterious to such cells after phagocytosis. Unexpectedly, our findings provide the first evidence for a direct role of Ndt80 as a repressor of C. parapsilosis virulence attributes. This finding shows that C. parapsilosis Ndt80 functionally diverges from its homolog in the close related fungal pathogen C. albicans.


Subject(s)
Biofilms/growth & development , Candida parapsilosis/genetics , Candida parapsilosis/pathogenicity , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Phenotype , Transcription Factors/genetics , Animals , Candidiasis/microbiology , Humans , Macrophages/microbiology , Mice , Phagocytosis , RAW 264.7 Cells
2.
Adv Mater ; 32(2): e1906305, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31769556

ABSTRACT

Cellular aggregates are used as relevant regenerative building blocks, tissue models, and cell delivery platforms. Biomaterial-free structures are often assembled either as 2D cell sheets or spherical microaggregates, both incompatible with free-form deposition, and dependent on challenging processes for macroscale 3D upscaling. The continuous and elongated nature of fiber-shaped materials enables their deposition in unrestricted multiple directions. Cellular fiber fabrication has often required exogenously provided support proteins and/or the use of biomaterial-based sacrificial templates. Here, the rapid (<24 h) assembly of fiberoids is reported: living centimeter-long scaffold-free fibers of cells produced in the absence of exogenous materials or supplements. Adipose-derived mesenchymal stem cell fiberoids can be easily modulated into complex multidimensional geometries and show tissue-invasive properties while keeping the secretion of trophic factors. Proangiogenic properties studied on a chick chorioallantoic membrane in an ovo model are observed for heterotypic fiberoids containing endothelial cells. These micro-to-macrotissues may find application as morphogenic therapeutic and tissue-mimetic building blocks, with the ability to integrate 3D and 4D full biological materials.


Subject(s)
Biocompatible Materials , Mesenchymal Stem Cells/cytology , Tissue Scaffolds , Adipose Tissue/cytology , Humans , Time Factors , Tissue Engineering
3.
Biomaterials ; 185: 240-275, 2018 12.
Article in English | MEDLINE | ID: mdl-30261426

ABSTRACT

The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.


Subject(s)
Biocompatible Materials/chemistry , Bone Regeneration , Bone and Bones/metabolism , Tissue Engineering/methods , Animals , Biocompatible Materials/metabolism , Biomechanical Phenomena , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Bone and Bones/chemistry , Bone and Bones/ultrastructure , Humans , Osteogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...