Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792084

ABSTRACT

Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.


Subject(s)
Cistus , Hypoglycemic Agents , Neuroprotective Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Humans , Cistus/chemistry , Resins, Plant/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Cell Proliferation/drug effects , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Hep G2 Cells , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification
2.
Int J Mol Sci ; 25(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38791385

ABSTRACT

Natural products are generally considered safe for human consumption, but this classification is often based on ethnobotanical surveys or their use in traditional medicine over a long period of time. However, edaphoclimatic factors are known to produce different chemotypes, which may affect the safety profile and bioactivities, and are not commonly considered for plants exploited as crops worldwide. Thymus carnosus Boiss., a thyme species with various health-promoting effects, has potential pharmaceutical applications, but edaphoclimatic factors were found to significantly impact its phytochemical composition. Thus, we aimed to assess the safety profile of T. carnosus extracts obtained from plants harvested in two locations over three consecutive years and to establish an association with specific components, an essential study in the search for new sources of nutraceuticals. Thus, the antiproliferative effect of an aqueous decoction (AD), hydroethanolic (HE) extracts, and major extracts' components of T. carnosus was evaluated on intestinal (Caco-2) and hepatic (HepG2) cell models, revealing effects dependent on extract type, cell line, and tested compounds. Flavonoids induced different cytotoxic patterns, which could be attributed to molecular structural differences. Flow cytometry analysis showed apoptosis and necrosis induction, mediated by the modulation of intracellular reactive oxygen species and mitochondrial membrane potential, effects that were dependent on the cell line and phytochemical composition and on the synergism between extracts components, rather than on the activity of an isolated compound. While ursolic acid was the component with the strongest impact on the difference between extraction methods, flavonoids assumed a pivotal role in the response of different cell lines to the extracts. We report for the first time, for Thymus spp. extracts, that variations in the phytochemical composition clearly influence the cellular response, thus highlighting the need for extract standardization for medicinal applications.


Subject(s)
Oxidative Stress , Phytochemicals , Plant Extracts , Thymus Plant , Thymus Plant/chemistry , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Oxidative Stress/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/analysis , Caco-2 Cells , Hep G2 Cells , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Death/drug effects , Reactive Oxygen Species/metabolism , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/analysis , Biomarkers
3.
Antioxidants (Basel) ; 13(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38247489

ABSTRACT

Food intake is a basic need to sustain life, but foodborne pathogens and food-related xenobiotics are also the main health concerns regarding intestinal barrier homeostasis. With a predominant role in the well-being of the entire human body, intestinal barrier homeostasis is strictly regulated by epithelial and immune cells. These cells are also the main intervenients in oxidative stress and inflammation-related diseases in the intestinal tract, triggered, for example, by genetic/epigenetic factors, food additives, pesticides, drugs, pathogens, and their metabolites. Nevertheless, the human diet can also be seen as a solution for the problem, mainly via the inclusion of functional foods or nutraceuticals that may act as antioxidant/anti-inflammatory agents to prevent and mitigate acute and chronic oxidative damage and inflammation. A literature analysis of recent advances in this topic highlights the significant role of Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells) pathways in these biological processes, with many natural products and phytochemicals targeting endogenous antioxidant systems and cytokine production and balance. In this review, we summarized and discussed studies using in vitro and in vivo models of the intestinal tract used to reproduce oxidative damage and inflammatory events, as well as the role of natural products as modulators of Nrf2 and NK-kB pathways.

4.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240175

ABSTRACT

Prunus lusitanica L. is a shrub belonging to the genus Prunus L. (Rosaceae family) that produces small fruits with none known application. Thus, the aim of this study was to determine the phenolic profile and some health-promoting activities of hydroethanolic (HE) extracts obtained from P. lusitanica fruits, harvested from three different locations. Qualitative and quantitative analysis of extracts was performed using HPLC/DAD-ESI-MS and antioxidant activity was assessed by in vitro methods. Antiproliferative/cytotoxic activity was determined on Caco-2, HepG2, and RAW 264.7 cells, anti-inflammatory activity was assessed using lipopolysaccharide (LPS)-stimulated RAW 264.7 cells, and the antidiabetic, antiaging, and neurobiological action of extracts was determined in vitro by assessing their inhibitory effect against the activity of α-amylase, α-glucosidase, elastase, tyrosinase, and acetylcholinesterase (AChE). Results showed that P. lusitanica fruit HE extracts from the three different locations showed identical phytochemical profile and bioactivities, although small differences were observed regarding the quantities of some compounds. Extracts of P. lusitanica fruits contain high levels in total phenolic compounds, namely, hydroxycinnamic acids, as well as flavan-3-ols and anthocyanins, primarily cyanidin-3-(6-trans-p-coumaroyl)glucoside. P. lusitanica fruit extracts have a low cytotoxic/antiproliferative effect, with the lowest IC50 value obtained in HepG2 cells (352.6 ± 10.0 µg/mL, at 48 h exposure), but high anti-inflammatory activity (50-60% NO release inhibition, at 100 µg/mL extract) and neuroprotective potential (35-39% AChE inhibition, at 1 mg/mL), and moderate antiaging (9-15% tyrosinase inhibition, at 1 mg/mL) and antidiabetic (9-15% α-glucosidase inhibition, at 1 mg/mL) effects. The bioactive molecules present in the fruits of P. lusitanica deserve to be further explored for the development of new drugs of interest to the pharmaceutical and cosmetic industry.


Subject(s)
Diabetes Mellitus , Neurodegenerative Diseases , Prunus , Humans , Prunus/chemistry , Fruit/chemistry , Anthocyanins/analysis , Monophenol Monooxygenase , Neurodegenerative Diseases/drug therapy , Acetylcholinesterase , Caco-2 Cells , alpha-Glucosidases , Plant Extracts/chemistry , Antioxidants/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Phenols/pharmacology , Inflammation/drug therapy
5.
J Xenobiot ; 13(2): 172-192, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37092502

ABSTRACT

The role of intestinal barrier homeostasis in an individual's general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell's defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters' activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.

6.
Int J Pharm ; 639: 122982, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37116598

ABSTRACT

Licochalcone-A (Lico-A) PLGA NPs functionalized with cell penetrating peptides B6 and Tet-1 are proposed for the treatment of ocular anti-inflammatory diseases. In this work, we report the in vitro biocompatibility of cell penetrating peptides-functionalized Lico-A-loaded PLGA NPs in Caco-2 cell lines revealing a non-cytotoxic profile, and their anti-inflammatory activity against RAW 264.7 cell lines. Given the risk of hydrolysis of the liquid suspensions, freeze-drying was carried out testing different cryoprotectants (e.g., disaccharides, alcohols, and oligosaccharide-derived sugar alcohol) to prevent particle aggregation and mitigate physical stress. As the purpose is the topical eye instillation of the nanoparticles, to reduce precorneal wash-out, increase residence time and thus Lico-A bioavailability, an in-situ forming gel based on poloxamer 407 containing Lico-A loaded PLGA nanoparticles functionalized with B6 and Tet-1 for ocular administration has been developed. Developed formulations remain in a flowing semi-liquid state under non-physiological conditions and transformed into a semi-solid state under ocular temperature conditions (35 °C), which is beneficial for ocular administration. The pH, viscosity, texture parameters and gelation temperature results met the requirements for ophthalmic formulations. The gel has characteristics of viscoelasticity, suitable mechanical and mucoadhesive performance which facilitate its uniform distribution over the conjunctiva surface. In conclusion, we anticipate the potential clinical significance of our developed product provided that a synergistic effect is achieved by combining the high anti-inflammatory activity of Lico-A delivered by PLGA NPs with B6 and Tet-1 for site-specific targeting in the eye, using an in-situ forming gel.


Subject(s)
Cell-Penetrating Peptides , Nanoparticles , Humans , Caco-2 Cells , Anti-Inflammatory Agents , Nanoparticles/chemistry , Eye
7.
Molecules ; 28(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985518

ABSTRACT

Under climate change threats, there is a growing need to adapt the conventional agronomic practices used in rainfed olive orchards by sustainable practices, in order to ensure adequate crop yield and olive oil quality and to preserve soil health. Therefore, for two years, the effects of conventional tillage practice (T) and two sustainable soil management strategies, a leguminous cover crop (LC) and its combination with natural zeolites (ZL), on the yield, fatty acid composition, polyphenolic profile and quality indices of olive fruits and oil were evaluated. Crop yield was significantly increased by LC and ZL in the first year. Although in the second year no significant differences were verified, the cumulative yield increased significantly by 31.6% and 35.5% in LC and ZL trees, respectively. LC enhanced the moisture and size of olives, while ZL increased, in general, the concentrations of oleuropein, verbascoside, caffeic acid and epicatechin, as well the oleic/linoleic ratio in fruits and the levels of 3,4-dihydroxyphenylglycol, tyrosol, verbascoside and caffeic acid in olive oil. Despite the higher concentration of total phenols in the fruits and oil from T trees in the warmer and dryer year, the quality of the oil decreased, mainly when compared with ZL, as evidenced by the peroxide value and K232 and K270 coefficients. In short, both sustainable soil management strategies appear to be promising practices to implement in olive orchards under rainfed conditions, but the innovative strategy of combining zeolites with legume cover crops, first reported in the present study, confers advantages from a nutritional and technological point of view. Nevertheless, studies subjected to the long-term use of these practices should be conducted to ensure the sustainability of the crop yield and olive oil quality.


Subject(s)
Fabaceae , Olea , Zeolites , Olive Oil , Fatty Acids , Crops, Agricultural , Phenols , Soil , Vegetables
8.
Antioxidants (Basel) ; 12(3)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36978915

ABSTRACT

Thymus carnosus Boiss. is a near-threatened species, and, as for many species, its potential for medicinal purposes may be lost if measures towards plant protection are not taken. A way of preserving these species is to increase knowledge about their medicinal properties and economic potential. Thus, with the objective of studying the potentiality of introducing T. carnosus as a crop, the stability of the phytochemical profile of T. carnosus was studied during a period of three years by comparing the phytochemical profile of extracts obtained from plants harvested in two different edaphoclimatic locations, as well as by comparing the respective bioactivities, namely, antioxidant, antidiabetic, antiaging, and neuroprotective activities. It was reported, for the first time, the effect of annual variation and geographic location in the phytochemical composition of aqueous decoction and hydroethanolic extracts of T. carnosus. In addition, the presence of two salvianolic acid B/E isomers in T. carnosus extracts is here described for the first time. Despite the variations in phytochemical composition, according to harvesting location or year, T. carnosus extracts maintain high antioxidant activity, assessed by their capacity to scavenge ABTS•+, •OH , NO•, O2•- radicals, as well as to prevent ß-carotene bleaching. All extracts presented significant potential to inhibit acetylcholinesterase (AChE), tyrosinase, and α-glucosidase, denoting neuroprotective, anti-aging, and anti-diabetic potential. In conclusion, the vegetative stage and location of harvest are key factors to obtain the maximum potential of this species, namely, a phytochemical profile with health benefit bioactivities.

9.
Int J Mol Sci ; 24(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36675206

ABSTRACT

Natural products used for their health-promoting properties have accompanied the evolution of humanity. Nowadays, as an effort to scientifically validate the health-promoting effects described by traditional medicine, an ever-growing number of bioactivities are being described for natural products and the phytochemicals that constitute them. Among them, medicinal plants and more specifically the Thymus genus spp., arise as products already present in the diet and with high acceptance, that are a source of phytochemicals with high pharmacological value. Phenolic acids, flavonoid glycoside derivatives, and terpenoids from Thymus spp. have been described for their ability to modulate cell death and survival pathways, much-valued bioactivities in the pharmaceutical industry, that continually sought-after new formulations to prevent undesired cell death or to control cell proliferation. Among these, wound treatment, protection from endogenous/exogenous toxic molecules, or the induction of selective cell death, such as the search for new anti-tumoral agents, arise as main objectives. This review summarizes and discusses studies on Thymus spp., as well as on compounds present in their extracts, with regard to their health-promoting effects involving the modulation of cell death or survival signaling pathways. In addition, studies regarding the main bioactive molecules and their cellular molecular targets were also reviewed. Concerning cell survival and proliferation, Thymus spp. present themselves as an option for new formulations designed for wound healing and protection against chemicals-induced toxicity. However, Thymus spp. extracts and some of their compounds regulate cell death, presenting anti-tumoral activity. Therefore Thymus spp. is a rich source of compounds with nutraceutical and pharmaceutical value.


Subject(s)
Plants, Medicinal , Thymus Plant , Phytotherapy , Medicine, Traditional , Plant Extracts/chemistry , Phytochemicals/chemistry , Cell Death
10.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499513

ABSTRACT

Thymus capitellatus Hoffmanns & Link is an endemic species of the Iberian Peninsula listed as near-threatened, due to its restricted geographical distribution, occurring mainly in Portugal's mainland. In this work, we detail for the first time T. capitellatus extracts' phytochemical composition, as well as an evaluation of bioactivities to point out potential health benefits. Aqueous decoction (AD) and hydroethanolic (HE) extracts were obtained, both rich in flavonoids. However, quercetin-(?)-O-hexoside was identified as the main compound in T. capitellatus HE extract, while the phenolic acid rosmarinic acid was the main component of AD extracts. In addition, HE extract presents significant amounts of salvianolic acids and of the terpenoids oleanolic and ursolic acid. Both extracts showed antioxidant activity, evaluated by their capacity to scavenge ABTS and superoxide radicals, as well as an ability to prevent lipid peroxidation. AD extracts were also effective in scavenging hydroxyl and nitric oxide radicals. As potential functional foods, T. capitellatus extracts presented neuroprotective and anti-diabetic activity, in addition to time- and dose-dependent anti-proliferative activity against Caco-2 (colorectal adenocarcinoma) and HepG2 (hepatic carcinoma) cells. HE extract presented higher cytotoxicity than AD extract, and HepG2 cells were more resistant than Caco-2 cells. After 24 h exposure to HE extract, the IC50 values were 330 µg/mL and 447 µg/mL for Caco-2 and HepG2 cells, respectively. T. capitellatus has potential as a functional food or as a source of bioactive molecules. These results also highlight the need to preserve species with as yet unknown molecular compositions and potential medicinal applications.


Subject(s)
Antioxidants , Thymus Extracts , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Caco-2 Cells , Lipid Peroxidation
11.
Food Chem X ; 15: 100437, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36211754

ABSTRACT

Despite the high value of Portuguese elderberries, recognized for decades by European markets, only a few studies address their beneficial effects at cellular level. Aiming to explore the anti-inflammatory and the cellular antioxidant potential characterized extracts from the three main Portuguese elderberry cultivars (Sabugueiro, Sabugueira, Bastardeira) were used. Lipopolysaccharide-stimulated RAW 264.7 cells pre-exposed to elderberry extracts exhibited dose-dependent inhibition of nitric oxide release, evidencing anti-inflammatory activity. Concerning cellular antioxidant protection, HepG2 and Caco-2 cells pre-exposure to elderberry extracts (50 µg/mL) prevented up-to 90 % of tert-butyl hydroperoxide (t-BOOH)-induced toxicity. In Caco-2 cells, elderberry extracts prevented glutathione depletion, reactive oxygen species production, abnormal morphological changes and DNA fragmentation, in response to t-BOOH oxidative insult. Results demonstrated that elderberries have high potential in reducing cellular oxidative stress as well as in preventing inflammatory processes. Thus, elderberries have high potential as health promoters, acting as functional foods or as sources of nutraceuticals.

12.
Toxics ; 10(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36006126

ABSTRACT

Pesticides affect different organs and tissues according to their bioavailability, chemical properties and further molecular interactions. In animal models exposed to several classes of pesticides, neurotoxic effects have been described, including the reduction of acetylcholinesterase activity in tissue homogenates. However, in homogenates, the reduction in enzymatic activity may also result from lower enzymatic expression and not only from enzymatic inhibition. Thus, in this work, we aimed to investigate the neurotoxic potential of four distinct pesticides: glyphosate (herbicide), imazalil (fungicide), imidacloprid (neonicotinoid insecticide) and lambda-cyhalothrin (pyrethroid insecticide), by assessing their inhibitory effect on the activity of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, by using direct in vitro enzymatic inhibition methods. All pesticides dose-dependently inhibited AChE activity, with an inhibition of 11 ± 2% for glyphosate, 48 ± 2% for imidacloprid, 49 ± 3% for imazalil and 50 ± 3% for lambda-cyhalothrin, at 1 mM. Only imazalil inhibited BChE. Imazalil induced dose-dependent inhibition of BChE with identical pattern as that observed for AChE; however, for lower concentrations (up to 500 µM), imazalil showed higher specificity for AChE, and for higher concentrations, the same specificity was found. Imazalil, at 1 mM, inhibited the activity of BChE by 49 ± 1%. None of the pesticides, up to 1 mM, inhibited tyrosinase activity. In conclusion, the herbicide glyphosate shows specificity for AChE but low inhibitory capacity, the insecticides imidacloprid and λ-cyhalothrin present selective AChE inhibition, while the fungicide IMZ is a broad-spectrum cholinesterase inhibitor capable of inhibiting AChE and BChE in an equal manner. Among these pesticides, the insecticides and the fungicide are the ones with higher neurotoxic potential.

13.
Int J Mol Sci ; 23(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897683

ABSTRACT

In this work, three pesticides of different physicochemical properties: glyphosate (GLY, herbicide), imidacloprid (IMD, insecticide), and imazalil (IMZ, fungicide), were selected to assess their cytotoxicity against Caco-2 and HepG2 cells. Cell viability was assessed by the Alamar Blue assay, after 24 and 48 h exposure to different concentrations, and IC50 values were calculated. The mechanisms underlying toxicity, namely cellular reactive oxygen species (ROS), glutathione (GSH) content, lipid peroxidation, loss of mitochondrial membrane potential (MMP), and apoptosis/necrosis induction were assessed by flow cytometry. Cytotoxic profiles were further correlated with the molecular physicochemical parameters of pesticides, namely: water solubility, partition coefficient in an n-octanol/water (Log Pow) system, topological polar surface area (TPSA), the number of hydrogen-bonds (donor/acceptor), and rotatable bonds. In vitro outputs resulted in the following toxicity level: IMZ (Caco-2: IC50 = 253.5 ± 3.37 µM, and HepG2: IC50 = 94 ± 12 µM) > IMD (Caco-2: IC50 > 1 mM and HepG2: IC50 = 624 ± 24 µM) > GLY (IC50 >>1 mM, both cell lines), after 24 h treatment, being toxicity time-dependent (lower IC50 values at 48 h). Toxicity is explained by oxidative stress, as IMZ induced a higher intracellular ROS increase and lipid peroxidation, followed by IMD, while GLY did not change these markers. However, the three pesticides induced loss of MMP in HepG2 cells while in Caco-2 cells only IMZ produced significant MMP loss. Increased ROS and loss of MMP promoted apoptosis in Caco-2 cells subjected to IMZ, and in HepG2 cells exposed to IMD and IMZ, as assessed by Annexin-V/PI. The toxicity profile of pesticides is directly correlated with their Log Pow, as affinity for the lipophilic environment favours interaction with cell membranes governs, and is inversely correlated with their TPSA; however, membrane permeation is favoured by lower TPSA. IMZ presents the best molecular properties for membrane interaction and cell permeation, i.e., higher Log Pow, lower TPSA and lower hydrogen-bond (H-bond) donor/acceptor correlating with its higher toxicity. In conclusion, molecular physicochemical factors such as Log Pow, TPSA, and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus they are key factors to potentially predict the toxicity of other compounds.


Subject(s)
Pesticides , Apoptosis , Caco-2 Cells , Glutathione/metabolism , Hep G2 Cells , Humans , Hydrogen , Oxidative Stress , Pesticides/toxicity , Reactive Oxygen Species/metabolism , Water
14.
Toxics ; 10(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35878283

ABSTRACT

In this work, three pesticides of different physicochemical properties, namely, glyphosate (herbicide), imidacloprid (insecticide) and imazalil (fungicide), were selected to assess their cytotoxicity against distinct cell models (Caco-2, HepG2, A431, HaCaT, SK-MEL-5 and RAW 264.7 cells) to mimic gastrointestinal and skin exposure with potential systemic effect. Cells were subjected to different concentrations of selected pesticides for 24 h or 48 h. Cell viability was assessed by Alamar Blue assay, morphological changes by bright-field microscopy and the IC50 values were calculated. Cytotoxic profiles were analysed using the physico-chemical parameters of the pesticides, namely: molecular weight, water solubility, the partition coefficient in the n-octanol/water (Log Pow) system, the topological polar surface area (TPSA), and number of hydrogen-bonds (donor/acceptor) and rotatable bonds. Results showed that glyphosate did not reduce cell viability (up to 1 mM), imidacloprid induced moderate toxicity (IC50 > 1 mM for Caco-2 cells while IC50 = 305.9 ± 22.4 µM for RAW 264.7 cells) and imazalil was highly cytotoxic (IC50 > 253.5 ± 3.37 for Caco-2 cells while IC50 = 31.3 ± 2.7 µM for RAW 264.7 cells) after 24 h exposure. Toxicity was time-dependent as IC50 values at 48 h exposure were lower, and decrease in cell viability was accompanied by changes in cell morphology. Pesticides toxicity was found to be directly proportional with their Log Pow, indicating that the affinity to a lipophilic environment such as the cell membranes governs their toxicity. Toxicity is inverse to pesticides TPSA, but lower TPSA favours membrane permeation. The lower toxicity against Caco-2 cells was attributed to the physiology and metabolism of cell barriers equipped with various ABC transporters. In conclusion, physicochemical factors such as Log Pow, TPSA and H-bond are likely to be directly correlated with pesticide-induced toxicity, thus being key factors to potentially predict the toxicity of other compounds.

15.
Antioxidants (Basel) ; 11(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35883822

ABSTRACT

Soil degradation processes and climate change threaten the sustainability of Mediterranean rainfed olive orchards, with repercussions on crop yield and quality of olives, olive oil and olive by-products. Using soil amendments can enhance soil fertility for sustained environmental quality and plant performance. For two years, we evaluated, under rainfed conditions, the effects of a fertilizer compound (FC) and its combination with zeolites (ZL) and biochar (BC) amendments on soil moisture, yield, fruit and oil polyphenols and quality indices. The polyphenolic composition was strongly influenced by treatments, although no effects were observed on crop yield. ZL improved soil moisture (average increase of 26.3% compared to FC), fruit fatty acid composition (increase of 12.4% in oleic/linoleic ratio in 2018) and oil quality, BC enhanced the concentrations of polyphenols with high nutritional value (average annual increase of 25.6, 84.8 and 11.6% for 3,4-dihydroxyphenylglycol, oleuropein and rutin, respectively). In contrast, olive oil from FC fruits showed the poorest quality, with oxidation and hydrolytic breakdown signals. The applied soil amendments appear to be a promising sustainable strategy to implement in olive rainfed orchards.

16.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35682847

ABSTRACT

Lipid nanoparticles are currently used to deliver drugs to specific sites in the body, known as targeted therapy. Conjugates of lipids and drugs to produce drug-enriched phospholipid micelles have been proposed to increase the lipophilic character of drugs to overcome biological barriers. However, their applicability at the topical level is still minimal. Phospholipid micelles are amphiphilic colloidal systems of nanometric dimensions, composed of a lipophilic nucleus and a hydrophilic outer surface. They are currently used successfully as pharmaceutical vehicles for poorly water-soluble drugs. These micelles have high in vitro and in vivo stability and high biocompatibility. This review discusses the use of lipid-drug conjugates as biocompatible carriers for cutaneous application. This work provides a metadata analysis of publications concerning the conjugation of cannabidiol with lipids as a suitable approach and as a new delivery system for this drug.


Subject(s)
Cannabidiol , Nanoparticles , Drug Carriers , Drug Delivery Systems/methods , Liposomes , Micelles , Phospholipids
17.
Plants (Basel) ; 11(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684251

ABSTRACT

Labdanum resin from Cistus ladanifer L. (Cistaceae) is an abundant natural resource in the Iberian Peninsula worth being explored in a sustainable manner. It is already used in the cosmetic industry; mainly by the fragrances/perfumery sector. However, given the highest market share and traditional uses, labdanum resin also has the potential to be used and valued as a cosmetic ingredient for skincare. Aiming to evaluate this potential, labdanum methanolic absolute and fractions purified by column chromatography were characterized by UPLC-DAD-ESI-MS and then evaluated for UV-protection, antioxidant, anti-elastase, anti-inflammatory, and antimicrobial activities. Labdanum absolute represented ~70% of the resin; diterpenoid and flavonoid fractions represented ~75% and 15% of the absolute, respectively. Labdane-type diterpenoids and methylated flavonoids were the main compounds in labdanum absolute and in diterpenoid and flavonoid fractions, respectively. Labdanum absolute showed a spectrophotometric sun protection factor (SPF) near 5, which is mainly due to flavonoids, as the flavonoids' SPF was 13. Low antioxidant activity was observed, with ABTS radical scavenging being the most significant (0.142 ± 0.017, 0.379 ± 0.039 and 0.010 ± 0.003 mgTE/mgExt, for the absolute and flavonoid and terpene fractions, respectively). Anti-aging and anti-inflammatory activity are reported here for the first time, by the inhibition of elastase activity (22% and 13%, by absolute and flavonoid extract at 1 mg/mL), and by the inhibition of nitric oxide production in LPS-induced RAW 264.7 cells (84% to 98%, at 15 µg/mL extracts, flavonoid fraction the most active), respectively. Antimicrobial activity, against relevant skin and cosmetic product microorganisms, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, and Escherichia coli, revealed that only S. aureus was susceptible to labdanum absolute (MIC: 1.2 mg/mL) and its fractions (MIC: <0.3 mg/mL). In conclusion, labdanum resin showed potential to be used in sunscreen cosmetics, anti-inflammatory skincare cosmeceuticals or medicines but has low potential as a cosmetic product preservative given the low antioxidant and low-spectrum antimicrobial activities.

18.
Bioengineering (Basel) ; 9(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35447718

ABSTRACT

Microemulsions and nanoemulsions are lipid-based pharmaceutical systems with a high potential to increase the permeation of drugs through the skin. Although being isotropic dispersions of two nonmiscible liquids (oil and water), significant differences are encountered between microemulsions and nanoemulsions. Microemulsions are thermodynamically stable o/w emulsions of mean droplet size approximately 100-400 nm, whereas nanoemulsions are thermodynamically unstable o/w emulsions of mean droplet size approximately 1 to 100 nm. Their inner oil phase allows the solubilization of lipophilic drugs, achieving high encapsulation rates, which are instrumental for drug delivery. In this review, the importance of these systems, the key differences regarding their composition and production processes are discussed. While most of the micro/nanoemulsions on the market are held by the cosmetic industry to enhance the activity of drugs used in skincare products, the development of novel pharmaceutical formulations designed for the topical, dermal and transdermal administration of therapeutic drugs is being considered. The delivery of poorly water-soluble molecules through the skin has shown some advantages over the oral route, since drugs escape from first-pass metabolism; particularly for the treatment of cutaneous diseases, topical delivery should be the preferential route in order to reduce the number of drugs used and potential side-effects, while directing the drugs to the site of action. Thus, nanoemulsions and microemulsions represent versatile options for the delivery of drugs through lipophilic barriers, and many synthetic and natural compounds have been formulated using these delivery systems, aiming to improve stability, delivery and bioactivity. Detailed information is provided concerning the most relevant recent scientific publications reporting the potential of these delivery systems to increase the skin permeability of drugs with anti-inflammatory, sun-protection, anticarcinogenic and/or wound-healing activities. The main marketed skincare products using emulsion-based systems are also presented and discussed.

19.
J Xenobiot ; 12(1): 21-40, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35076536

ABSTRACT

Glyphosate-based herbicide has been the first choice for weed management worldwide since the 1970s, mainly due to its efficacy and reported low toxicity, which contributed to its high acceptance. Many of the recent studies focus solely on the persistence of pesticides in soils, air, water or food products, or even on the degree of exposure of animals, since their potential hazards to human health have raised concerns. Given the unaware exposure of the general population to pesticides, and the absence of a significant number of studies on occupational hazards, new glyphosate-induced toxicity data obtained for both residual and acute doses should be analyzed and systematized. Additionally, recent studies also highlight the persistence and toxicity of both glyphosate metabolites and surfactants present in herbicide formulations. To renew or ban the use of glyphosate, recently published studies must be taken into account, aiming to define new levels of safety for exposure to herbicide, its metabolites, and the toxic excipients of its formulations. This review aims to provide an overview of recent publications (2010-present) on in vitro and in vivo studies aimed at verifying the animal toxicity induced by glyphosate, its metabolite aminomethylphosphonic acid (AMPA) and glyphosate-based formulations, evaluated in various experimental models. Apart from glyphosate-induced toxicity, recent data concerning the role of surfactants in the toxicity of glyphosate-based formulations are discussed.

20.
Food Chem X ; 12: 100171, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34901827

ABSTRACT

Orange thyme (Thymus fragrantissimus) is becoming widely used in food as a condiment and herbal tea, nevertheless its chemical composition and potential bioactivities are largely unknown. Thus the objective of this work is to obtain a detailed phytochemical profile of T. fragrantissimus by exhaustive ethanolic extraction and by aqueous decoction mimicking its consumption. Extracts showed high content in rosmarinic acid, luteolin-O-hexuronide and eriodictyol-O-hexuronide; these were the main phenolic compounds present in orange thyme accounting for 85% of the total phenolic compounds. Orange thyme extracts presented high scavenging activity against nitric oxide and superoxide radicals. Both extracts presented significant inhibitory effect of tyrosinase activity and moderate anti-acetylcholinesterase activity. Both extracts showed a good in vitro anti-inflammatory activity and a weak anti-proliferative/cytotoxic activity against Caco-2 and HepG2 cell lines supporting its safe use. Orange thyme is a very good source of bioactive compounds with potential use in different food and nutraceutical industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...