Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Electr Bioimpedance ; 13(1): 136-142, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36694878

ABSTRACT

Diabetic peripheral neuropathy (DPN) may lead to several changes in the skin, and some of these may influence the skin impedance spectrum. In the present study we have developed a prototype solution for skin impedance spectroscopy at selected skin sites (big toe pulp, heel and toe ball) that was tested in a pilot study on five patients with DPN and five healthy controls. At the big toe, most of the controls had markedly lower impedance than the DPN group, especially in the range of 1-100 kHz. The separation between the groups seems to be weaker at the heel and weakest at the toeball. The results may indicate that monitoring of the skin impedance spectrum may be a method for detection of skin changes associated with DPN, encouraging further studies with the big toe sensor in particular.

2.
ERJ Open Res ; 7(4)2021 Oct.
Article in English | MEDLINE | ID: mdl-34877350

ABSTRACT

BACKGROUND: Oxygen-delivering modalities like humidified high-flow nasal cannula (HFNC) and noninvasive positive-pressure ventilation (NIV) are suspected of generating aerosols that may contribute to transmission of disease such as coronavirus disease 2019. We sought to assess if these modalities lead to increased aerosol dispersal compared to the use of non-humidified low-flow nasal cannula oxygen treatment (LFNC). METHODS: Aerosol dispersal from 20 healthy volunteers using HFNC, LFNC and NIV oxygen treatment was measured in a controlled chamber. We investigated effects related to coughing and using a surgical face mask in combination with the oxygen delivering modalities. An aerodynamic particle sizer measured aerosol particles (APS3321, 0.3-20 µm) directly in front of the subjects, while a mesh of smaller particle sensors (SPS30, 0.3-10 µm) was distributed in the test chamber. RESULTS: Non-productive coughing led to significant increases in particle dispersal close to the face when using LFNC and HFNC but not when using NIV. HFNC or NIV did not lead to a statistically significant increase in aerosol dispersal compared to LFNC. With non-productive cough in a room without air changes, there was a significant drop in particle levels between 100 cm and 180 cm from the subjects. CONCLUSIONS: Our results indicate that using HFNC and NIV does not lead to increased aerosol dispersal compared to low-flow oxygen treatment, except in rare cases. For a subject with non-productive cough, NIV with double-limb circuit and non-vented mask may be a favourable choice to reduce the risk for aerosol spread.

3.
Front Surg ; 6: 8, 2019.
Article in English | MEDLINE | ID: mdl-30915337

ABSTRACT

Importance: During monopolar electrosurgery in patients, current paths can be influenced by metal implants, which can cause unintentional tissue heating in proximity to implants. Guidelines concerning electrosurgery and active implants such as pacemakers or implantable cardioverter defibrillators have been published, but most describe interference between electrosurgery and the active implant rather than the risk of unintended tissue heating. Tissue heating in proximity to implants during electrosurgery may cause an increased risk of patient injury. Objective: To determine the temperature of tissue close to metal implants during electrosurgery in an in-vitro model. Design, Setting, and Participants: Thirty tissue samples (15 with a metal implant placed in center, 15 controls without implant) were placed in an in vitro measurement chamber. Electrosurgery was applied at 5-60 W with the active electrode at three defined distances from the implant while temperatures at four defined distances from the implant were measured using fiber-optic sensors. Main Outcomes and Measures: Tissue temperature increase at the four tissue sites was determined for all power levels and each of the electrode-to-implant distances. Based on a linear mixed effects model analysis, the primary outcomes were the difference in temperature increase between implant and control tissue, and the estimated temperature increase per watt per minute. Results: Tissues with an implant had higher temperature increases than controls at all power levels after 1 min of applied electrosurgery (mean difference of 0.16°C at 5 W, 0.50°C at 15 W, 1.11°C at 30 W, and 2.22°C at 60 W, all with p < 0.001). Temperature increase close to the implant was estimated to be 0.088°C/W/min (95% CI: 0.078-0.099°C/W/min; p < 0.001). Temperature could increase to above 43°C after 1 min of 60 W. Active electrode position had no significant effect on temperature increases for tissues with implant (p = 0.6). Conclusions and Relevance: The temperature of tissue close to a metal implant increases with passing electrosurgery current. There is a significant risk of high tissue temperature when long activation times or high power levels are used.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 5805-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26737611

ABSTRACT

Electrosurgery is a commonly used device in the operating room, but it has some adverse effects, which are only partly described in literature. Interference issues are well described, but unintended heating in and around implants is not well studied. We simulated different scenarios using a Finite Element Model to investigate unintended heating caused by electrosurgery. We looked at different shapes, sizes, and active electrode placements. We found that all these factors play a role in the amount of heating.


Subject(s)
Heating , Electrodes , Electrosurgery , Humans , Operating Rooms , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...