Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cancer Gene Ther ; 28(9): 924-934, 2021 09.
Article in English | MEDLINE | ID: mdl-33664460

ABSTRACT

Gastric cancer (GC) is an aggressive malignancy that is the third leading cause of cancer mortality worldwide. Localized GC can be cured with surgery, but most patients present with more advanced non-operable disease. Until recently, treatment options for relapsed and refractory advanced GC have been limited to combination chemotherapy regimens, HER-2 directed therapy, and radiation, which lead to few durable responses. Over the past decade, there have been significant advances in our understanding of the molecular and immune pathogenesis of GC. The infectious agents Epstein-Barr virus and Helicobacter pylori perturb the gastric mucosa immune equilibrium, which creates a microenvironment that favors GC tumorigenesis and evasion of immune surveillance. Insights into immune mechanisms of GC have translated into novel therapeutics, including immune checkpoint inhibitors, which have become a treatment option for select patients with GC. Furthermore, chimeric antigen receptor T-cell therapies have emerged as a breakthrough treatment for many cancers, with recent studies showing this to be a potential therapy for GC. In this review, we summarize the current state of knowledge on immune mechanisms of GC and the status of emerging immunotherapies to treat this aggressive cancer, as well as outline current challenges and directions for future research.


Subject(s)
Immunotherapy/methods , Stomach Neoplasms/drug therapy , Humans , Tumor Microenvironment
2.
Cancers (Basel) ; 12(1)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941061

ABSTRACT

Gastric cancer is an aggressive and heterogeneous malignancy that often varies in presentation and disease among racial and ethnic groups. The Alaska Native (AN) people have the highest incidence and mortality rates of gastric cancer in North America. This study examines molecular markers in solid tumor samples from eighty-five AN gastric adenocarcinoma patients using next-generation sequencing, immunohistochemistry, and in situ hybridization analysis. AN patients have a low mutation burden with fewer somatic gene mutations in their tumors compared to other populations, with the most common mutation being TP53. Epstein-Barr virus (EBV) was associated with 20% of AN gastric cancers, which is higher than the world average of 10%. The inflammation marker, cyclooxygenase-2 (COX-2), is highly expressed in patients with the lowest survival rates. Mismatch repair deficiency was present in 10% of AN patients and was associated with patients who were female, 50 years or older, gene mutations, and tumors in the distal stomach. Program death-ligand 1 (PD-L1) was expressed in 14% of AN patients who were more likely to have MMR deficiency, EBV-associated gastric cancers, and mutations in the PIK3CA gene, all of which have been linked to clinical response to PD-1 inhibitors. These studies suggest a portion of AN gastric cancer patients could be candidates for immunotherapy. Overall, this study highlights future avenues of investigation for clinical and translational studies, so that we can improve early detection and develop more effective treatments for AN patients.

3.
Pharm Front ; 12019.
Article in English | MEDLINE | ID: mdl-31886474

ABSTRACT

In the tumor microenvironment, cytokines, growth factors, and oncogenes mediate constitutive activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway in both cancer cells and infiltrating immune cells. STAT3 activation in cancer cells drives tumorigenic changes that allow for increased survival, proliferation, and resistance to apoptosis. The modulation of immune cells is more complicated and conflicting. STAT3 signaling drives the myeloid cell phenotype towards an immune suppressive state, which mediates T cell inhibition. On the other hand, STAT3 signaling in T cells leads to proliferation and T cell activity required for an anti-tumor response. Targeted delivery of STAT3 inhibitors to cancer cells and myeloid cells could therefore improve therapeutic outcomes. Many compounds that inhibit the STAT3 pathways for cancer treatment include peptide drugs, small molecule inhibitors, and natural compounds. However, natural compounds that inhibit STAT3 are often hydrophobic, which reduces their bioavailability and leads to unfavorable pharmacokinetics. This review focuses specifically on liposome-encapsulated natural STAT3 inhibitors and their ability to target cancer cells and myeloid cells to reduce tumor growth and decrease STAT3-mediated immune suppression. Many of these liposome formulations have led to profound tumor reduction and examples of combination formulations have been shown to eliminate tumors through immune modulation.

4.
Front Neurosci ; 13: 369, 2019.
Article in English | MEDLINE | ID: mdl-31068777

ABSTRACT

There is a principle in science, known as Occam's razor, that says the correct solution is usually the one with the simplest explanation. The microbiota-gut-brain axis, an interdependent series of communication loops between the enteric nervous system (ENS), the microbiota, the gut, and the brain, offers important insight into how changes in our gut affect distant organs like our brains. The inherent complexity of this axis with the crosstalk between the immune system, inflammatory states, and the thousands of bacteria, viral, and fungal species that together make up the microbiota make studying the interactions that govern this axis difficult and far from parsimonious. It is becoming increasingly clear that the microbiota is integral to this axis. Disruption of the healthy flora, a phenomenon collectively referred to as dysbiosis, has been implicated as a driver for several diseases such as irritable bowel syndrome, rheumatoid arthritis, obesity, diabetes, liver disease, and neurological disorders such as depression, anxiety, and Parkinson's disease (PD). Teasing apart these complex interactions as they pertain to PD is critical for our understanding of this debilitating disease, but more importantly, for the development of future treatments. So far, treatments have been unable to stop this neurodegenerative disease, succeeding only in briefly dampening symptoms and buying patients time before the inevitable loss of function ensues. Given that the 10 years prognosis for death or life-limiting disability with someone diagnosed with PD is upwards of 80%, there is a desperate need for curative treatments that go beyond symptom management. If PD does begin in the periphery with bidirectional communication between the microbiota and the immune system, as recent literature suggests, there is an exciting possibility that progression could be stopped before it reaches the brain. This systematic review assesses the current literature surrounding the role of the microbiota in the pathogenesis of alpha-synucleinopathies and explores the hypothesis that alpha-synuclein folding is modulated by the microbiota. Furthermore, we discuss how changes in the gut environment can lead to pathology and outline the implications that advances in understanding the interactions between host and microbiota will have on future research and the development of potential biomarkers.

5.
J Immunother Cancer ; 6(1): 98, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30285905

ABSTRACT

BACKGROUND: Women diagnosed with breast cancer within 5 years postpartum (PPBC) have poorer prognosis than age matched nulliparous women, even after controlling for clinical variables known to impact disease outcomes. Through rodent modeling, the poor prognosis of PPBC has been attributed to physiologic mammary gland involution, which shapes a tumor promotional microenvironment through induction of wound-healing-like programs including myeloid cell recruitment. Previous studies utilizing immune compromised mice have shown that blocking prostaglandin synthesis reduces PPBC tumor progression in a tumor cell extrinsic manner. Given the reported roles of prostaglandins in myeloid and T cell biology, and the established importance of these immune cell populations in dictating tumor growth, we investigate the impact of involution on shaping the tumor immune milieu and its mitigation by ibuprofen in immune competent hosts. METHODS: In a syngeneic (D2A1) orthotopic Balb/c mouse model of PPBC, we characterized the impact of mammary gland involution and ibuprofen treatment on the immune milieu in tumors and draining lymph nodes utilizing flow cytometry, multiplex IHC, lipid mass spectroscopy and cytokine arrays. To further investigate the impact of ibuprofen on programming myeloid cell populations, we performed RNA-Seq on in vivo derived mammary myeloid cells from ibuprofen treated and untreated involution group mice. Further, we examined direct effects of ibuprofen through in vitro bone marrow derived myeloid cell cultures. RESULTS: Tumors implanted into the mammary involution microenvironment grow more rapidly and display a distinct immune milieu compared to tumors implanted into glands of nulliparous mice. This milieu is characterized by increased presence of immature monocytes and reduced numbers of T cells and is reversed upon ibuprofen treatment. Further, ibuprofen treatment enhances Th1 associated cytokines as well as promotes tumor border accumulation of T cells. Safety studies demonstrate ibuprofen does not impede gland involution, impact subsequent reproductive success, nor promote auto-reactivity as detected through auto-antibody and naïve T cell priming assays. CONCLUSIONS: Ibuprofen administration during the tumor promotional microenvironment of the involuting mammary gland reduces overall tumor growth and enhances anti-tumor immune characteristics while avoiding adverse autoimmune reactions. In sum, these studies implicate beneficial prophylactic use of ibuprofen during the pro-tumorigenic window of mammary gland involution.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Breast Neoplasms/drug therapy , Ibuprofen/therapeutic use , Macrophages/drug effects , T-Lymphocytes/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Breast Neoplasms/pathology , Cell Differentiation , Female , Humans , Ibuprofen/pharmacology , Mice , Postpartum Period
6.
World J Gastroenterol ; 24(25): 2722-2732, 2018 Jul 07.
Article in English | MEDLINE | ID: mdl-29991877

ABSTRACT

AIM: To evaluate recent trends in gastric cancer incidence, response to treatment, and overall survival among Alaska Native (AN) people. METHODS: A retrospective analysis of the Alaska Native Medical Center patient database was performed. Patient history, clinical, pathological, response to treatment and patient outcomes were collected from one-hundred and thirty-two AN gastric cancer patients. The Surveillance, Epidemiology and End Result database 18 was used to collect comparison United States non-Hispanic White (NHW) and AN gastric cancer patient data between 2006-2014. RESULTS: AN gastric cancer patients have a higher incidence rate, a poorer overall survival, and are diagnosed at a significantly younger age compared to NHW patients. AN patients differ from NHW patients in greater prevalence of non-cardia, diffuse subtype, and signet ring cell carcinomas. AN females were more likely to be diagnosed with later stage cancer, stage IV, compared to AN males. Diminished overall survival was observed among AN patients with increasing stage, O+ blood type, < 15 lymph nodes examined at resection, and no treatment. This study is the first report detailing the clinicopathologic features of gastric cancer in AN people with outcome data. CONCLUSION: Our findings confirm the importance of early detection, treatment, and surgical resection for optimizing AN patient outcomes. Further research on early detection markers are warranted.


Subject(s)
/statistics & numerical data , Carcinoma, Signet Ring Cell/epidemiology , Health Status Disparities , SEER Program/statistics & numerical data , Stomach Neoplasms/epidemiology , Adult , Aged , Aged, 80 and over , Carcinoma, Signet Ring Cell/diagnosis , Carcinoma, Signet Ring Cell/pathology , Carcinoma, Signet Ring Cell/therapy , Early Detection of Cancer/statistics & numerical data , Female , Helicobacter pylori/isolation & purification , Humans , Incidence , Lymph Nodes/pathology , Male , Middle Aged , Retrospective Studies , Sex Factors , Stomach/microbiology , Stomach/pathology , Stomach/surgery , Stomach Neoplasms/diagnosis , Stomach Neoplasms/pathology , Stomach Neoplasms/therapy , Treatment Outcome , United States/epidemiology , White People/statistics & numerical data , Young Adult
7.
Int J Cancer ; 136(8): 1803-13, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25187059

ABSTRACT

Women diagnosed with breast cancer within 5 years postpartum have poor survival rates. The process of postpartum mammary gland involution, whereby the lactating gland remodels to its prepregnant state, promotes breast cancer progression in xenograft models. Macrophage influx occurs during mammary gland involution, implicating immune modulation in the promotion of postpartum breast cancer. Herein, we characterize the postpartum murine mammary gland and find an orchestrated influx of immune cells similar to that which occurs during wound healing. Further, the normal involuting gland may be in an immunosuppressed state as discerned by the transient presence of Foxp3(+) regulatory T cells and IL-10(+) macrophages with T cell suppressive function. To determine the influence of the postpartum immune microenvironment on mammary tumor promotion, we developed an immune-competent model. In this model, mammary tumors in the involution group are sixfold larger than nulliparous group tumors, have decreased CD4(+) and CD8(+) T cell infiltrates and contain a greater number of macrophages with the ability to inhibit T cell activation. Targeting involution with a neutralizing antibody against the immunosuppressive cytokine IL-10 reduces tumor growth in involution group mice but not in nulliparous mice, implicating the involution microenvironment as the primary target of αIL-10 treatment. Relevance to women is implicated, as we find postlactational human breast tissue has transient high IL-10(+) and Foxp3(+) immune cell infiltrate. These data show an immune modulated microenvironment within the normal involuting mammary gland suggestive of immunosuppression, that when targeted reduces tumor promotion, revealing possible immune-based strategies for postpartum breast cancer.


Subject(s)
Mammary Glands, Animal/immunology , Mammary Glands, Animal/pathology , Mammary Glands, Human/immunology , Mammary Glands, Human/pathology , Postpartum Period/immunology , Wound Healing/immunology , Adult , Animals , Breast/immunology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Progression , Female , Forkhead Transcription Factors/immunology , Humans , Interleukin-10/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Middle Aged , Young Adult
8.
J Clin Invest ; 124(9): 3901-12, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25133426

ABSTRACT

Breast involution following pregnancy has been implicated in the high rates of metastasis observed in postpartum breast cancers; however, it is not clear how this remodeling process promotes metastasis. Here, we demonstrate that human postpartum breast cancers have increased peritumor lymphatic vessel density that correlates with increased frequency of lymph node metastases. Moreover, lymphatic vessel density was increased in normal postpartum breast tissue compared with tissue from nulliparous women. In rodents, mammary lymphangiogenesis was upregulated during weaning-induced mammary gland involution. Furthermore, breast cancer cells exposed to the involuting mammary microenvironment acquired prolymphangiogenic properties that contributed to peritumor lymphatic expansion, tumor size, invasion, and distant metastases. Finally, in rodent models of postpartum breast cancer, cyclooxygenase-2 (COX-2) inhibition during the involution window decreased normal mammary gland lymphangiogenesis, mammary tumor-associated lymphangiogenesis, tumor cell invasion into lymphatics, and metastasis. Our data indicate that physiologic COX-2-dependent lymphangiogenesis occurs in the postpartum mammary gland and suggest that tumors within this mammary microenvironment acquire enhanced prolymphangiogenic activity. Further, our results suggest that the prolymphangiogenic microenvironment of the postpartum mammary gland has potential as a target to inhibit metastasis and suggest that further study of the therapeutic efficacy of COX-2 inhibitors in postpartum breast cancer is warranted.


Subject(s)
Breast Neoplasms/pathology , Cyclooxygenase 2/physiology , Lymphangiogenesis/physiology , Puerperal Disorders/pathology , Animals , Breast Neoplasms/drug therapy , Celecoxib , Dinoprostone/biosynthesis , Disease Models, Animal , Female , Humans , Lymphatic Metastasis , Lymphatic Vessels/pathology , Mice , Mice, Inbred BALB C , Pregnancy , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Tumor Microenvironment
9.
J Mammary Gland Biol Neoplasia ; 19(2): 213-28, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24952477

ABSTRACT

Postpartum mammary gland involution has been identified as tumor-promotional and is proposed to contribute to the increased rates of metastasis and poor survival observed in postpartum breast cancer patients. In rodent models, the involuting mammary gland microenvironment is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Postpartum involution shares many attributes with wound healing, including upregulation of genes involved in immune responsiveness and infiltration of tissue by immune cells. In rodent models, treatment with non-steroidal anti-inflammatory drugs (NSAIDs) ameliorates the tumor-promotional effects of involution, consistent with the immune milieu of the involuting gland contributing to tumor promotion. Currently, immunotherapy is being investigated as a means of breast cancer treatment with the purpose of identifying ways to enhance anti-tumor immune responses. Here we review evidence for postpartum mammary gland involution being a uniquely defined 'hot-spot' of pro-tumorigenic immune cell infiltration, and propose that immunotherapy should be explored for prevention and treatment of breast cancers that arise in this environment.


Subject(s)
Breast Neoplasms/immunology , Mammary Glands, Animal/immunology , Mammary Glands, Human/immunology , Mammary Neoplasms, Animal/immunology , Postpartum Period/immunology , Animals , Female , Humans , Immunotherapy/methods
10.
Exp Cell Res ; 319(11): 1671-8, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23664839

ABSTRACT

The magnitude of the breast cancer problem implores researchers to aggressively investigate prevention strategies. However, several barriers currently reduce the feasibility of breast cancer prevention. These barriers include the inability to accurately predict future breast cancer diagnosis at the individual level, the need for improved understanding of when to implement interventions, uncertainty with respect to optimal duration of treatment, and negative side effects associated with currently approved chemoprevention therapies. None-the-less, the unique biology of the mammary gland, with its postnatal development and conditional terminal differentiation, may permit the resolution of many of these barriers. Specifically, lifecycle-specific windows of breast cancer risk have been identified that may be amenable to risk-reducing strategies. Here, we argue for prevention research focused on two of these lifecycle windows of risk: postpartum mammary gland involution and peri-menopause. We provide evidence that these windows are highly amenable to targeted, limited duration treatments. Such approaches could result in the prevention of postpartum and postmenopausal breast cancers, correspondingly.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/prevention & control , Cell Transformation, Neoplastic/drug effects , Drug Design , Animals , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Disease Progression , Female , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...