Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Antioxidants (Basel) ; 12(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36830052

ABSTRACT

Cancer cells fuel growth and energy demands by increasing their NAD+ biosynthesis dependency, which therefore represents an exploitable vulnerability for anti-cancer strategies. CD38 is a NAD+-degrading enzyme that has become crucial for anti-MM therapies since anti-CD38 monoclonal antibodies represent the backbone for treatment of newly diagnosed and relapsed multiple myeloma patients. Nevertheless, further steps are needed to enable a full exploitation of these strategies, including deeper insights of the mechanisms by which CD38 promotes tumorigenesis and its metabolic additions that could be selectively targeted by therapeutic strategies. Here, we present evidence that CD38 upregulation produces a pervasive intracellular-NAD+ depletion, which impairs mitochondrial fitness and enhances oxidative stress; as result, genetic or pharmacologic approaches that aim to modify CD38 surface-level prime MM cells to NAD+-lowering agents. The molecular mechanism underlying this event is an alteration in mitochondrial dynamics, which decreases mitochondria efficiency and triggers energetic remodeling. Overall, we found that CD38 handling represents an innovative strategy to improve the outcomes of NAD+-lowering agents and provides the rationale for testing these very promising agents in clinical studies involving MM patients.

3.
Haematologica ; 107(6): 1410-1426, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34670358

ABSTRACT

Identification of novel vulnerabilities in the context of therapeutic resistance is emerging as a key challenge for cancer treatment. Recent studies have detected pervasive aberrant splicing in cancer cells, supporting its targeting for novel therapeutic strategies. Here, we evaluated the expression of several spliceosome machinery components in multiple myeloma (MM) cells and the impact of splicing modulation on tumor cell growth and viability. A comprehensive gene expression analysis confirmed the reported deregulation of spliceosome machinery components in MM cells, compared to normal plasma cells from healthy donors, with its pharmacological and genetic modulation resulting in impaired growth and survival of MM cell lines and patient-derived malignant plasma cells. Consistent with this, transcriptomic analysis revealed deregulation of BCL2 family members, including decrease of anti-apoptotic long form of myeloid cell leukemia-1 (MCL1) expression, as crucial for "priming" MM cells for Venetoclax activity in vitro and in vivo, irrespective of t(11;14) status. Overall, our data provide a rationale for supporting the clinical use of splicing modulators as a strategy to reprogram apoptotic dependencies and make all MM patients more vulnerable to BCL2 inhibitors.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Antineoplastic Agents/therapeutic use , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides
4.
Haematologica ; 105(10): 2420-2431, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33054082

ABSTRACT

Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Agammaglobulinaemia Tyrosine Kinase , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases , Pyrimidines
5.
Blood Adv ; 4(18): 4312-4326, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32915979

ABSTRACT

Metabolic reprogramming is emerging as a cancer vulnerability that could be therapeutically exploitable using different approaches, including amino acid depletion for those tumors that rely on exogenous amino acids for their maintenance. ʟ-Asparaginase (ASNase) has contributed to a significant improvement in acute lymphoblastic leukemia outcomes; however, toxicity and resistance limit its clinical use in other tumors. Here, we report that, in multiple myeloma (MM) cells, the DNA methylation status is significantly associated with reduced expression of ASNase-related gene signatures, thus suggesting ASNase sensitivity for this tumor. Therefore, we tested the effects of ASNase purified from Erwinia chrysanthemi (Erw-ASNase), combined with the next-generation proteasome inhibitor (PI) carfilzomib. We observed an impressive synergistic effect on MM cells, whereas normal peripheral blood mononuclear cells were not affected. Importantly, this effect was associated with increased reactive oxygen species (ROS) generation, compounded mitochondrial damage, and Nrf2 upregulation, regardless of the c-Myc oncogenic-specific program. Furthermore, the cotreatment resulted in genomic instability and DNA repair mechanism impairment via increased mitochondrial oxidative stress, which further enhanced its antitumor activity. Interestingly, carfilzomib-resistant cells were found to be highly dependent on amino acid starvation, as reflected by their higher sensitivity to Erw-ASNase treatment compared with isogenic cells. Overall, by affecting several cellular programs, Erw-ASNase makes MM cells more vulnerable to carfilzomib, providing proof of concept for clinical use of this combination as a novel strategy to enhance PI sensitivity in MM patients.


Subject(s)
Amino Acids , Asparaginase , Asparaginase/pharmacology , Cell Death , Humans , Leukocytes, Mononuclear , Mitochondria , Oligopeptides , Reactive Oxygen Species
7.
Oncotarget ; 9(5): 5691-5702, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29464027

ABSTRACT

Due to the high mutational somatic burden of Cutaneous Malignant Melanoma (CMM) a thorough profiling of the driver mutations and their interplay is necessary to explain the timing of tumorigenesis or for the identification of actionable genetic events. The aim of this study was to establish the mutation rate of some of the key drivers in melanoma tumorigenesis combining molecular analyses and/or immunohistochemistry in 93 primary CMMs from an Italian cohort also characterized for germline status, and to investigate an interplay between germline and somatic variants. BRAF mutations were present in 68% of cases, while CDKN2A germline mutations were found in 16 % and p16 loss in tissue was found in 63%. TERT promoter somatic mutations were detected in 38% of cases while the TERT -245T>C polymorphism was found in 51% of cases. NRAS mutations were found in 39% of BRAF negative or undetermined cases. NF1 was expressed in all cases analysed. MC1R variations were both considered as a dichotomous variable or scored. While a positive, although not significant association between CDKN2A germline mutations, but not MC1R variants, and BRAF somatic mutation was found, we did not observe other associations between germline and somatic events. A yet undescribed inverse correlation between TERT -245T>C polymorphism and the presence of BRAF mutation was found. It is possible to hypothesize that -245T>C polymorphism could be included in those genotypes which may influence the occurrence of BRAF mutations. Further studies are needed to investigate the role of -245T>C polymorphism as a germline predictor of BRAF somatic mutation status.

8.
Oncotarget ; 8(5): 8069-8082, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28039443

ABSTRACT

Finding the best technique to identify BRAF mutations with a high sensitivity and specificity is mandatory for accurate patient selection for target therapy. BRAF mutation frequency ranges from 40 to 60% depending on melanoma clinical characteristics and detection technique used.Intertumoral heterogeneity could lead to misinterpretation of BRAF mutational status; this is especially important if testing is performed on primary specimens, when metastatic lesions are unavailable.Aim of this study was to identify the best combination of methods for detecting BRAF mutations (among peptide nucleic acid - PNA-clamping real-time PCR, immunohistochemistry and capillary sequencing) and investigate BRAF mutation heterogeneity in a series of 100 primary melanomas and a subset of 25 matched metastatic samples.Overall, we obtained a BRAF mutation frequency of 62%, based on the combination of at least two techniques. Concordance between mutation status in primary and metastatic tumor was good but not complete (67%), when agreement of at least two techniques were considered. Next generation sequencing was used to quantify the threshold of detected mutant alleles in discordant samples. Combining different methods excludes that the observed heterogeneity is technique-based. We propose an algorithm for BRAF mutation testing based on agreement between immunohistochemistry and PNA; a third molecular method could be added in case of discordance of the results. Testing the primary tumor when the metastatic sample is unavailable is a good option if at least two methods of detection are used, however the presence of intertumoral heterogeneity or the occurrence of additional primaries should be carefully considered.


Subject(s)
Biomarkers, Tumor/genetics , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Melanoma/genetics , Mutation , Proto-Oncogene Proteins B-raf/genetics , Real-Time Polymerase Chain Reaction , Skin Neoplasms/genetics , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Melanoma/enzymology , Melanoma/secondary , Middle Aged , Observer Variation , Phenotype , Predictive Value of Tests , Prognosis , Reproducibility of Results , Skin Neoplasms/enzymology , Skin Neoplasms/pathology
9.
Indian J Pathol Microbiol ; 59(3): 335-8, 2016.
Article in English | MEDLINE | ID: mdl-27510672

ABSTRACT

Gorlin-Goltz syndrome (GGS) is an uncommon autosomal dominant inherited disorder which comprises the triad of basal cell carcinomas (BCCs), odontogenic keratocysts, and musculoskeletal malformations. Besides this triad, neurological, ophthalmic, endocrine, and genital manifestations are known to be variable. It is occasionally associated with aggressive BCC and internal malignancies. This report documents a case of GGS with a novel mutation in the PTCH1 gene in an 11-year-old child. The clinical, radiographic, histopathologic and molecular findings of this condition, and treatment are described, and a review of GGS was carried out.


Subject(s)
Basal Cell Nevus Syndrome/diagnosis , Basal Cell Nevus Syndrome/pathology , Carcinoma, Basal Cell/diagnosis , Jaw Neoplasms/diagnosis , Mutation, Missense , Odontogenic Tumors/diagnosis , Patched-1 Receptor/genetics , Basal Cell Nevus Syndrome/genetics , Carcinoma, Basal Cell/genetics , Child , Head/diagnostic imaging , Head/pathology , Histocytochemistry , Humans , Jaw Neoplasms/diagnostic imaging , Jaw Neoplasms/genetics , Male , Microscopy , Odontogenic Tumors/diagnostic imaging , Odontogenic Tumors/genetics , Radiography, Panoramic , Radiography, Thoracic , Tomography, X-Ray Computed
10.
Clin Lab ; 62(4): 731-4, 2016.
Article in English | MEDLINE | ID: mdl-27215095

ABSTRACT

BACKGROUND: Intracardiac myxomas are frequent benign tumors of the heart and typically localize in the left atri- um and interatrial septum. When myxomas generate at other sites, they are designated as atypical. Mutations in the PRKAR1A gene (a tumor suppressor gene that encodes a protein kinase A [PKA] regulatory 1-alpha subunit) have been identified in both syndromic and non-syndromic cardiac atypical myxomas. METHODS: We report the case of a 33-year old woman suffering from night fever, weight loss, asthenia, and progressive dyspnea. RESULTS: The blood laboratory tests revealed microcytic anemia, leukocytosis, thrombocytosis, increased serum levels of C-reactive protein level, and negative blood cultures. Physical examination also demonstrated a 2/6 systolic murmur. Transthoracic and trans-esophageal echocardiography showed a voluminous, mobile mass in the left atrium with a secondary dynamic obstruction of the left cardiac chamber and a significant functional mitral stenosis. A myxoma was supposed and the patient underwent surgery. Histologically, the lesion was identified as myxomatous tumor with gelatinous pattern. No germline mutations of the PRKAR1A gene were detected. The postoperative course did not present any complications, and the patient was discharged on the sixth postoperative day in good clinical condition. Accordingly, there was an improvement in the laboratory tests' results and a resolution of symptoms. CONCLUSIONS: The patient presented an atrial giant gelatinous myxoma with peculiarity of fever of unknown origin, without PRKAR1A gene germline mutations.


Subject(s)
Cyclic AMP-Dependent Protein Kinase RIalpha Subunit/genetics , Heart Neoplasms/genetics , Mutation , Myxoma/genetics , Adult , Female , Heart Atria , Humans
11.
J Am Acad Dermatol ; 74(2): 325-32, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26775776

ABSTRACT

BACKGROUND: Multiple primary melanoma (MPM), in concert with a positive family history, is a predictor of cyclin-dependent kinase (CDK) inhibitor 2A (CDKN2A) germline mutations. A rule regarding the presence of either 2 or 3 or more cancer events (melanoma and pancreatic cancer) in low or high melanoma incidence populations, respectively, has been established to select patients for genetic referral. OBJECTIVE: We sought to determine the CDKN2A/CDK4/microphthalmia-associated transcription factor mutation rate among Italian patients with MPM to appropriately direct genetic counseling regardless of family history. METHODS: In all, 587 patients with MPM and an equal number with single primary melanomas and control subjects were consecutively enrolled at the participating centers and tested for CDKN2A, CDK4, and microphthalmia-associated transcription factor. RESULTS: CDKN2A germline mutations were found in 19% of patients with MPM versus 4.4% of patients with single primary melanoma. In familial MPM cases the mutation rate varied from 36.6% to 58.8%, whereas in sporadic MPM cases it varied from 8.2% to 17.6% in patients with 2 and 3 or more melanomas, respectively. The microphthalmia-associated transcription factor E318K mutation accounted for 3% of MPM cases altogether. LIMITATIONS: The study was hospital based, not population based. Rare novel susceptibility genes were not tested. CONCLUSION: Italian patients who developed 2 melanomas, even in situ, should be referred for genetic counseling even in the absence of family history.


Subject(s)
Genetic Counseling , Melanoma/genetics , Neoplasms, Multiple Primary/genetics , Patient Selection , Skin Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Germ-Line Mutation , Humans , Italy , Microphthalmia-Associated Transcription Factor/genetics , Middle Aged , Mutation Rate , Young Adult
12.
Endocrine ; 53(3): 672-80, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26296380

ABSTRACT

The optimal method for BRAF mutation detection remains to be determined despite advances in molecular detection techniques. The aim of this study was to compare, against classical Sanger sequencing, the diagnostic performance of two of the most recently developed, highly sensitive methods: BRAF V600E immunohistochemistry (IHC) and peptide nucleic-acid (PNA)-clamp qPCR. BRAF exon 15 mutations were searched in formalin-fixed paraffin-embedded tissues from 86 papillary thyroid carcinoma using the three methods. The limits of detection of Sanger sequencing in borderline or discordant cases were quantified by next generation sequencing. BRAF mutations were found in 74.4 % of cases by PNA, in 71 % of cases by IHC, and in 64 % of cases by Sanger sequencing. Complete concordance for the three methods was observed in 80 % of samples. Better concordance was observed with the combination of two methods, particularly PNA and IHC (59/64) (92 %), while the combination of PNA and Sanger was concordant in 55 cases (86 %). Sensitivity of the three methods was 99 % for PNA, 94.2 % for IHC, and 89.5 % for Sanger. Our data show that IHC could be used as a cost-effective, first-line method for BRAF V600E detection in daily practice, followed by PNA analysis in negative or uninterpretable cases, as the most efficient method. PNA-clamp quantitative PCR is highly sensitive and complementary to IHC as it also recognizes other mutations besides V600E and it is suitable for diagnostic purposes.


Subject(s)
Adenocarcinoma, Papillary/genetics , Immunohistochemistry/methods , Mutation , Proto-Oncogene Proteins B-raf/genetics , Real-Time Polymerase Chain Reaction/methods , Thyroid Neoplasms/genetics , Adenocarcinoma, Papillary/metabolism , DNA Mutational Analysis/methods , Female , Humans , Male , Middle Aged , Proto-Oncogene Proteins B-raf/metabolism , Sensitivity and Specificity , Thyroid Neoplasms/metabolism
13.
Diagn Cytopathol ; 43(8): 654-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25995191

ABSTRACT

Multiple dermal cylindromas and membranous basal cell adenoma of parotid gland in a 67-year-old woman with Brooke-Spiegler syndrome (BSS) were examined by fine-needle cytology. Histology, immunochemistry, and CYLD germline mutation testing were also performed. Cytomorphology and immunochemistry of the two lesions showed basaloid neoplasms, remarkably similar, composed by proliferating epithelial cells of basal type accompanied by a smaller proportion of myoepithelial cells. CYLD gene showed a novel germline splice acceptor site mutation (c.2042-1G>C) with skipping of the entire exon 15. The occurrence of analogous tumors, dermal cylindromas, and membranous basal cell adenoma of the parotid gland, in the same patient may result from the action of a single gene on ontogenetically similar stem cells. Therefore, patients with BSS should be offered a genetic counselling for an early and correct diagnosis.


Subject(s)
Adenoma/diagnosis , Neoplastic Syndromes, Hereditary/diagnosis , Parotid Neoplasms/diagnosis , Skin Neoplasms/diagnosis , Tumor Suppressor Proteins/genetics , Adenoma/genetics , Adenoma/pathology , Aged , Base Sequence , Biopsy, Fine-Needle , Deubiquitinating Enzyme CYLD , Female , Gene Expression , Germ-Line Mutation , Histocytochemistry , Humans , Molecular Sequence Data , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/pathology , Parotid Gland/metabolism , Parotid Gland/pathology , Parotid Neoplasms/genetics , Parotid Neoplasms/pathology , Skin/metabolism , Skin/pathology , Skin Neoplasms/genetics , Skin Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...