Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(4): 2008-2021, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38289251

ABSTRACT

The aim of this study was to gain a better understanding of the key structural factors and intermolecular interactions underlying the formation, functionality, and in vitro gastrointestinal behaviour of the liposomal form of nutraceuticals coated with whey proteins (WPI) and chitosan (CHIT). Phosphatidylcholine (PC) liposomes were used to encapsulate a combination of hydrophobic and hydrophilic nutraceuticals. The hydrophobic constituents were long-chain (LC) n-3 PUFAs (DHA and EPA) from fish oil (FO), vitamin D3, and clove essential oil (CEO), while the hydrophilic component was γ-aminobutyric acid (GABA). A combination of physicochemical methods was used to achieve this goal, including electron paramagnetic resonance spectroscopy (EPRS), laser light scattering in dynamic, static, and electrophoretic modes, transmission electron microscopy, spectrophotometry and tensiometry. The efficiency of encapsulating the nutraceuticals in PC liposomes simultaneously was as follows: 100 ± 1% for both FO triglycerides and CEO, 82 ± 2% for vitamin D3, and 50 ± 1% for GABA. According to EPRS data, encapsulating LC PUFA reduced microviscosity at a depth of 20 Å in the PC bilayer. The co-encapsulation of other nutraceuticals in PC liposomes at selected concentrations did not alter this effect. The upper part (8 Å) of PC liposome bilayers showed an increase in rigidity parameter S, indicating the presence of D3, CEO, and partially GABA. The liposome layer-by-layer encapsulation efficiency (EE%) was achieved by using WPI to form the binary complex [WPI-(PC-FO-D3-GABA-CEO)] (EE = 50% at pH 7.0 and I = 0.001 M), followed by coating with chitosan to form the ternary complex [WPI-(PC-FO-D3-GABA-CEO)]-CHIT (EE = 80% at pH 5.1 and I = 0.001 M). The biopolymer-coated liposomes displayed high water solubility owing to their submicron sizes, thermodynamic affinity for the aqueous medium, and 20 mV ζ-potential values. The chitosan shell regulated the release of liposomes from the ternary complex during in vitro gastrointestinal digestion. In the stomach, the hydrolysis of chitosan by pepsin resulted in a 40% release of liposomes. In the small intestine, chitosan was separated from the WPI-liposome core, facilitatig its hydrolysis and resulting in a 60% release of liposomes. The bioavailability of nutraceuticals encapsulated in PC liposomes in the small intestine may be enhanced by the interactions of both non-hydrolysed and hydrolysed liposomes with bile salts and mucin.


Subject(s)
Chitosan , Liposomes , Liposomes/chemistry , Whey Proteins , Chitosan/chemistry , Dietary Supplements , Gastrointestinal Tract , Cholecalciferol , gamma-Aminobutyric Acid , Particle Size
2.
Food Funct ; 13(4): 2354-2371, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35147140

ABSTRACT

The aim of this work was to establish the main relationship between the structure and functionality of supramolecular complexes formed by sodium caseinate (SC) with phosphatidylcholine (PC) liposomes filled with fish oil (FO) to an equal mass ratio of n-3 to n-6 polyunsaturated fatty acids (PUFA) in the absence and presence of one of the most effective plant antioxidants, namely the essential oil of clove buds (EOC). The functionality of the supramolecular complexes (SC-PC-FO and SC-PC-FO-EOC) was considered from the point of view of the possibility of their use as effective delivery systems for long-chain n-3 PUFAs (eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from FO). The laser light scattering method was used in the static, dynamic and electrophoretic modes to characterize the structure and thermodynamic parameters of the supramolecular complexes in an aqueous medium. It was found that the SC-PC-FO and SC-PC-FO-EOC complex particles had the following similar properties: nanosize; a spherical shape; 100% solubility in an aqueous medium (pH 7.0, ionic strength = 0.001 M); a high encapsulating ability of SC (up to 70%) in relation to the studied liposomes; and a high protective ability relative to lipid autooxidation (up to 96% on the 20th day of storage at room temperature in light). In addition, a sequential transformation of both the structural and thermodynamic parameters has been observed for the complex particles under in vitro simulated gastrointestinal (GI) conditions in accordance with the INFOGEST protocol. A greater release of the encapsulated lipids from the enzymatically hydrolyzed complex particles was observed at the small intestine stage compared to their release at the gastric stage. These data were in good agreement with those on the assessment of the bioavailability of the target PUFAs in in vivo experiments based on the chronic intake of aqueous solutions of the complexes (both SC-PC-FO and SC-PC-FO-EOC) by experimental mice for 92 days. Liver lipid profiles of the mice, obtained by gas-liquid chromatography, showed the following: (i) an almost twofold increase in the DHA content as compared with that of the control; (ii) an almost threefold decrease in the mass ratio of arachidonic acid (AA) (C20:4 n-6) to DHA (C22:6 n-3) compared to that of the control due to both a significant decrease in the AA content and a simultaneous pronounced increase in the DHA content; and (iii) an almost twofold decrease in the mass ratio of the total amounts of n-6 to n-3 PUFAs compared to that of the control.


Subject(s)
Caseins/pharmacology , Fatty Acids, Unsaturated/pharmacology , Fish Oils/pharmacology , Liposomes/pharmacology , Plant Oils/pharmacology , Syzygium , Animals , Caseins/chemistry , Drug Compounding , Fatty Acids, Unsaturated/chemistry , Fish Oils/chemistry , Humans , Liposomes/chemistry , Mice , Mice, Inbred C57BL , Plant Oils/chemistry , Structure-Activity Relationship
3.
Food Res Int ; 88(Pt A): 70-78, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28847405

ABSTRACT

Design of stimuli-sensitive (i.e., smart) nano-sized delivery systems for nutraceuticals, having both a nutritional and pharmaceutical value, is very important for the formulation of novel functional food. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are among the most needed nutraceuticals for the maintenance of good health. It is medically proven that in order to get the best effect on the human health the weight ratio of ω-6/ω-3 PUFAs should be within the range between 1/1 and 5/1. Thus, our work was focused on the molecular design of the delivery systems based on the nano-sized complexes formed between covalent conjugate (sodium caseinate+maltodextrin (a dextrose equivalent=2)) and the combinations of polyunsaturated lipids, which are mutually complementary in the ω-6 and ω-3 PUFAs content: α-linolenic (ALA)+linoleic (LA) acids; liposomes of soy phosphatidylcholine (PC)+ALA; and micelles of soy lysophosphatidylcholine (LPC)+ALA. For such complex particles the high extent (>95%) of encapsulation of these all combinations of lipids by the conjugate was found along with both the high protection of the lipids against oxidation and their high solubility in an aqueous medium. To gain a better insight into such functionality of the complex particles a number of their structural (the weight-averaged molar weight, Mw; the radius of gyration, RG; the hydrodynamic radius, Rh; the architecture; the volume; the density; the ζ-potential; the microviscosity of both the bilayers of PC liposomes and LPC micelles), and thermodynamic (the osmotic second virial coefficient, A2, reflecting the nature and intensity of both the complex-complex and complex-solvent pair interactions) parameters were measured by a combination of such basic physico-chemical methods as static and dynamic multiangle laser light scattering, particle electrophoresis, atomic-force microscopy and electron spin resonance spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...