Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Clin Endocrinol Metab ; 103(12): 4465-4477, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30113663

ABSTRACT

Context: Insulin resistance in skeletal muscle is a major risk factor for the development of type 2 diabetes in women with polycystic ovary syndrome (PCOS). Despite this, the mechanisms underlying insulin resistance in PCOS are largely unknown. Objective: To investigate the genome-wide DNA methylation and gene expression patterns in skeletal muscle from women with PCOS and controls and relate them to phenotypic variations. Design/Participants: In a case-control study, skeletal muscle biopsies from women with PCOS (n = 17) and age-, weight-, and body mass index‒matched controls (n = 14) were analyzed by array-based DNA methylation and mRNA expression profiling. Results: Eighty-five unique transcripts were differentially expressed in muscle from women with PCOS vs controls, including DYRK1A, SYNPO2, SCP2, and NAMPT. Furthermore, women with PCOS had reduced expression of genes involved in immune system pathways. Two CpG sites showed differential DNA methylation after correction for multiple testing. However, an mRNA expression of ∼30% of the differentially expressed genes correlated with DNA methylation levels of CpG sites in or near the gene. Functional follow-up studies demonstrated that KLF10 is under transcriptional control of insulin, where insulin promotes glycogen accumulation in myotubes of human muscle cells. Testosterone downregulates the expression levels of COL1A1 and MAP2K6. Conclusion: PCOS is associated with aberrant skeletal muscle gene expression with dysregulated pathways. Furthermore, we identified specific changes in muscle DNA methylation that may affect gene expression. This study showed that women with PCOS have epigenetic and transcriptional changes in skeletal muscle that, in part, can explain the metabolic abnormalities seen in these women.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Insulin Resistance/genetics , Muscle, Skeletal/metabolism , Polycystic Ovary Syndrome/genetics , Adult , Biopsy , Case-Control Studies , Cells, Cultured , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , CpG Islands/genetics , Down-Regulation , Early Growth Response Transcription Factors/genetics , Early Growth Response Transcription Factors/metabolism , Female , Follow-Up Studies , Gene Expression Profiling , Glycogen/metabolism , Humans , Insulin/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MAP Kinase Kinase 6/metabolism , Muscle Fibers, Skeletal , Muscle, Skeletal/cytology , Muscle, Skeletal/pathology , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/metabolism , Primary Cell Culture , Testosterone/metabolism
2.
PLoS One ; 12(11): e0185182, 2017.
Article in English | MEDLINE | ID: mdl-29099835

ABSTRACT

The nematode Ascaridia galli (order Ascaridida) is an economically important intestinal parasite responsible for increased food consumption, reduced performance and elevated mortality in commercial poultry production. This roundworm is an emerging problem in several European countries on farms with laying hens, as a consequence of the recent European Union (EU) ban on conventional battery cages. As infection is associated with slow development of low levels of acquired protective immunity, parasite control relies on repeated use of dewormers (anthelmintics). Benzimidazoles (BZ) are currently the only anthelmintic registered in the EU for use in controlling A. galli and there is an obvious risk of overuse of one drug class, selecting for resistance. Thus we developed a reference transcriptome of A. galli to investigate the response in gene expression before and after exposure to the BZ drug flubendazole (FLBZ). Transcriptional variations between treated and untreated A. galli showed that transcripts annotated as mitochondrial glutamate dehydrogenase and cytochrome P450 were significantly down-regulated in treated worms, whereas transcripts homologous to heat shock proteins (HSP), catalase, phosphofructokinase, and a multidrug resistance P-glycoprotein (PGP1) were significantly up-regulated in treated worms. Investigation of candidate transcripts responsible for anthelmintic resistance in livestock nematodes led to identification of several tubulins, including six new isoforms of beta-tubulin, and several ligand-gated ionotropic receptors and ABC-transporters. We discovered several transcripts associated with drug binding and processing genes, but further characterisation using a larger set of worms exposed to BZs in functional assays is required to determine how these are involved in drug binding and metabolism.


Subject(s)
Anthelmintics/pharmacology , Ascaridia/genetics , Mebendazole/analogs & derivatives , RNA, Helminth/genetics , Transcriptome , Animals , Ascaridia/drug effects , Chickens/parasitology , Female , Mebendazole/pharmacology , Phylogeny , Tubulin/genetics
3.
Sci Rep ; 7(1): 12305, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28951586

ABSTRACT

The reason for the largely variable protective effect against TB of the vaccine Bacille Calmette-Guerin (BCG) is not understood. In this study, we investigated whether epigenetic mechanisms are involved in the response of immune cells to the BCG vaccine. We isolated peripheral blood mononuclear cells (PBMCs) from BCG-vaccinated subjects and performed global DNA methylation analysis in combination with functional assays representative of innate immunity against Mycobacterium tuberculosis infection. Enhanced containment of replication was observed in monocyte-derived macrophages from a sub-group of BCG-vaccinated individuals (identified as 'responders'). A stable and robust differential DNA methylation pattern in response to BCG could be observed in PBMCs isolated from the responders but not from the non-responders. Gene ontology analysis revealed that promoters with altered DNA methylation pattern were strongly enriched among genes belonging to immune pathways in responders, however no enrichments could be observed in the non-responders. Our findings suggest that BCG-induced epigenetic reprogramming of immune cell function can enhance anti-mycobacterial immunity in macrophages. Understanding why BCG induces this response in responders but not in non-responders could provide clues to improvement of TB vaccine efficacy.


Subject(s)
BCG Vaccine/pharmacology , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Adult , Animals , BCG Vaccine/administration & dosage , BCG Vaccine/immunology , DNA Methylation/immunology , Epigenesis, Genetic/immunology , Female , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Tuberculosis/immunology , Tuberculosis/microbiology , Vaccination , Young Adult
4.
Plant Biotechnol J ; 15(2): 249-256, 2017 02.
Article in English | MEDLINE | ID: mdl-27510270

ABSTRACT

The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.


Subject(s)
Triticum/genetics , Ascomycota/pathogenicity , Base Sequence , Bread , Chromosome Mapping , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Computer Simulation , DNA, Plant/genetics , Disease Resistance , Genes, Plant , Genetic Markers , Microsatellite Repeats , Plant Diseases/genetics , Plant Diseases/microbiology , Translocation, Genetic , Triticum/microbiology
5.
New Phytol ; 213(2): 916-928, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27468091

ABSTRACT

B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes.


Subject(s)
Argonaute Proteins/metabolism , Chromosomes, Plant/genetics , Plant Proteins/metabolism , Secale/genetics , Base Sequence , Cell Nucleus/metabolism , Chromatin/metabolism , Computer Simulation , DNA-Directed RNA Polymerases/metabolism , Gene Amplification , Gene Dosage , Gene Expression Regulation, Plant , Gene Ontology , Genes, Plant , RNA, Messenger/genetics , RNA, Messenger/metabolism , Secale/enzymology , Transcription, Genetic
6.
Plant J ; 89(5): 853-869, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27888547

ABSTRACT

We report on a whole-genome draft sequence of rye (Secale cereale L.). Rye is a diploid Triticeae species closely related to wheat and barley, and an important crop for food and feed in Central and Eastern Europe. Through whole-genome shotgun sequencing of the 7.9-Gbp genome of the winter rye inbred line Lo7 we obtained a de novo assembly represented by 1.29 million scaffolds covering a total length of 2.8 Gbp. Our reference sequence represents nearly the entire low-copy portion of the rye genome. This genome assembly was used to predict 27 784 rye gene models based on homology to sequenced grass genomes. Through resequencing of 10 rye inbred lines and one accession of the wild relative S. vavilovii, we discovered more than 90 million single nucleotide variants and short insertions/deletions in the rye genome. From these variants, we developed the high-density Rye600k genotyping array with 600 843 markers, which enabled anchoring the sequence contigs along a high-density genetic map and establishing a synteny-based virtual gene order. Genotyping data were used to characterize the diversity of rye breeding pools and genetic resources, and to obtain a genome-wide map of selection signals differentiating the divergent gene pools. This rye whole-genome sequence closes a gap in Triticeae genome research, and will be highly valuable for comparative genomics, functional studies and genome-based breeding in rye.


Subject(s)
Chromosomes, Plant/genetics , Secale/genetics , DNA, Plant/genetics , Genome, Plant/genetics , Genomics , Genotype , Synteny
7.
Chromosome Res ; 24(3): 393-405, 2016 09.
Article in English | MEDLINE | ID: mdl-27294972

ABSTRACT

Holocentric chromosomes occur in a number of independent eukaryotic lineages, and they form holokinetic kinetochores along the entire poleward chromatid surfaces. Due to this alternative chromosome structure, Luzula elegans sister chromatids segregate already in anaphase I followed by the segregation of the homologues in anaphase II. However, not yet known is the localization and dynamics of cohesin and the structure of the synaptonemal complex (SC) during meiosis. We show here that the α-kleisin subunit of cohesin localizes at the centromeres of both mitotic and meiotic metaphase chromosomes and that it, thus, may contribute to assemble the centromere in L. elegans. This localization and the formation of a tripartite SC structure indicate that the prophase I behaviour of L. elegans is similar as in monocentric species.


Subject(s)
Cell Cycle Proteins/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Magnoliopsida/genetics , Meiosis/genetics , Meiotic Prophase I/genetics , Plant Proteins/metabolism , Synaptonemal Complex/ultrastructure , Autoantigens/genetics , Base Sequence , Cell Cycle Proteins/genetics , Centromere Protein A , Chromatids/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation/genetics , Chromosomes/genetics , Kinetochores/metabolism , Magnoliopsida/metabolism , Plant Proteins/genetics , Sequence Analysis, DNA , Cohesins
8.
Nucleic Acids Res ; 44(D1): D1141-7, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26527721

ABSTRACT

PGSB (Plant Genome and Systems Biology: formerly MIPS) PlantsDB (http://pgsb.helmholtz-muenchen.de/plant/index.jsp) is a database framework for the comparative analysis and visualization of plant genome data. The resource has been updated with new data sets and types as well as specialized tools and interfaces to address user demands for intuitive access to complex plant genome data. In its latest incarnation, we have re-worked both the layout and navigation structure and implemented new keyword search options and a new BLAST sequence search functionality. Actively involved in corresponding sequencing consortia, PlantsDB has dedicated special efforts to the integration and visualization of complex triticeae genome data, especially for barley, wheat and rye. We enhanced CrowsNest, a tool to visualize syntenic relationships between genomes, with data from the wheat sub-genome progenitor Aegilops tauschii and added functionality to the PGSB RNASeqExpressionBrowser. GenomeZipper results were integrated for the genomes of barley, rye, wheat and perennial ryegrass and interactive access is granted through PlantsDB interfaces. Data exchange and cross-linking between PlantsDB and other plant genome databases is stimulated by the transPLANT project (http://transplantdb.eu/).


Subject(s)
Databases, Genetic , Genome, Plant , Gene Expression , Genomics , Hordeum/genetics , Plants/genetics , Plants/metabolism , Secale/genetics , Software , Triticum/genetics
9.
Plant Sci ; 233: 200-212, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25711827

ABSTRACT

Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.


Subject(s)
Chromosomes, Plant , Gene Order , Triticum/genetics , Chromosome Mapping , Expressed Sequence Tags/chemistry , High-Throughput Nucleotide Sequencing , Molecular Sequence Data , Sequence Analysis, DNA
10.
Plant Genome ; 8(3): eplantgenome2015.06.0045, 2015 Nov.
Article in English | MEDLINE | ID: mdl-33228270

ABSTRACT

The aim of this study was to estimate the accuracy and convergence of newly developed barley (Hordeum vulgare L.) genomic resources, primarily genome zipper (GZ) and population sequencing (POPSEQ), at the genome-wide level and to assess their usefulness in applied barley breeding by analyzing seven known loci. Comparison of barley GZ and POPSEQ maps to a newly developed consensus genetic map constructed with data from 13 individual linkage maps yielded an accuracy of 97.8% (GZ) and 99.3% (POPSEQ), respectively, regarding the chromosome assignment. The percentage of agreement in marker position indicates that on average only 3.7% GZ and 0.7% POPSEQ positions are not in accordance with their centimorgan coordinates in the consensus map. The fine-scale comparison involved seven genetic regions on chromosomes 1H, 2H, 4H, 6H, and 7H, harboring major genes and quantitative trait loci (QTL) for disease resistance. In total, 179 GZ loci were analyzed and 64 polymorphic markers were developed. Entirely, 89.1% of these were allocated within the targeted intervals and 84.2% followed the predicted order. Forty-four markers showed a match to a POPSEQ-anchored contig, the percentage of collinearity being 93.2%, on average. Forty-four markers allowed the identification of twenty-five fingerprinted contigs (FPCs) and a more clear delimitation of the physical regions containing the traits of interest. Our results demonstrate that an increase in marker density of barley maps by using new genomic data significantly improves the accuracy of GZ. In addition, the combination of different barley genomic resources can be considered as a powerful tool to accelerate barley breeding.

11.
Biochim Biophys Acta ; 1849(1): 64-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25481283

ABSTRACT

BACKGROUND: B chromosomes are supernumerary dispensable parts of the karyotype which appear in some individuals of some populations in some species. Often, they have been considered as 'junk DNA' or genomic parasites without functional genes. SCOPE OF REVIEW: Due to recent advances in sequencing technologies, it became possible to investigate their DNA composition, transcriptional activity and effects on the host transcriptome profile in detail. Here, we review the most recent findings regarding the gene content of B chromosomes and their transcriptional activities and discuss these findings in the context of comparable biological phenomena, like sex chromosomes, aneuploidy and pseudogenes. MAJOR CONCLUSIONS: Recent data suggest that B chromosomes carry transcriptionally active genic sequences which could affect the transcriptome profile of their host genome. GENERAL SIGNIFICANCE: These findings are gradually changing our view that B chromosomes are solely genetically inert selfish elements without any functional genes. This at one side could partly explain the deleterious effects which are associated with their presence. On the other hand it makes B chromosome a nice model for studying regulatory mechanisms of duplicated genes and their evolutionary consequences.


Subject(s)
Chromosomes/genetics , DNA, Intergenic/genetics , Evolution, Molecular , Transcription, Genetic , Animals , Eukaryota/genetics , Gene Expression Regulation/genetics , Genome , Humans , In Situ Hybridization, Fluorescence , Pseudogenes/genetics
12.
Plant Cell ; 25(10): 3685-98, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24104565

ABSTRACT

Rye (Secale cereale) is closely related to wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to its large genome (~8 Gb) and its regional importance, genome analysis of rye has lagged behind other cereals. Here, we established a virtual linear gene order model (genome zipper) comprising 22,426 or 72% of the detected set of 31,008 rye genes. This was achieved by high-throughput transcript mapping, chromosome survey sequencing, and integration of conserved synteny information of three sequenced model grass genomes (Brachypodium distachyon, rice [Oryza sativa], and sorghum [Sorghum bicolor]). This enabled a genome-wide high-density comparative analysis of rye/barley/model grass genome synteny. Seventeen conserved syntenic linkage blocks making up the rye and barley genomes were defined in comparison to model grass genomes. Six major translocations shaped the modern rye genome in comparison to a putative Triticeae ancestral genome. Strikingly dissimilar conserved syntenic gene content, gene sequence diversity signatures, and phylogenetic networks were found for individual rye syntenic blocks. This indicates that introgressive hybridizations (diploid or polyploidy hybrid speciation) and/or a series of whole-genome or chromosome duplications played a role in rye speciation and genome evolution.


Subject(s)
Evolution, Molecular , Genome, Plant , Secale/genetics , Synteny , Brachypodium/genetics , Chromosome Mapping , Chromosomes, Plant , Conserved Sequence , DNA, Plant/genetics , Gene Order , Genetic Speciation , Genotype , High-Throughput Nucleotide Sequencing , Hordeum/genetics , Models, Genetic , Oryza/genetics , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
13.
Plant Physiol ; 163(3): 1323-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24096412

ABSTRACT

The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before.


Subject(s)
Chromosomes, Plant/genetics , Festuca/genetics , Genomics/methods , Sequence Analysis, DNA/methods , Blotting, Southern , Chromosome Mapping , Gene Order , Genome, Plant/genetics , Hordeum/genetics , In Situ Hybridization, Fluorescence , Karyotyping/methods , Molecular Sequence Data , Oryza , Reproducibility of Results , Sorghum/genetics , Synteny
14.
Plant Methods ; 9(1): 35, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-24011260

ABSTRACT

The genomic sequences of many important Triticeae crop species are hard to assemble and analyse due to their large genome sizes, (in part) polyploid genomes and high repeat content. Recently, the draft genomes of barley and bread wheat were reported thanks to cost-efficient and fast NGS technologies. The genome of barley is estimated to be 5 Gb in size whereas the genome of bread wheat accounts for 17 Gb and harbours an allo-hexaploid genome. Direct assembly of the sequence reads and access to the gene content is hampered by the repeat content. As a consequence, novel strategies and data analysis concepts had to be developed to provide much-needed whole genome sequence surveys and access to the gene repertoires. Here we describe some analytical strategies that now enable structuring of massive NGS data generated and pave the way towards structured and ordered sequence data and gene order. Specifically we report on the GenomeZipper, a synteny driven approach to order and structure NGS survey sequences of grass genomes that lack a physical map. In addition, to access and analyse the gene repertoire of allo-hexaploid bread wheat from the raw sequence reads, a reference-guided approach was developed utilizing representative genes from rice, Brachypodium distachyon, sorghum and barley. Stringent sub-assembly on the reference genes prevented collapsing of homeologous wheat genes and allowed to estimate gene retention rate and determine gene family sizes. Genomic sequences from the wheat sub-genome progenitors enabled to discriminate a large number of sub-assemblies between the wheat A, B or D sub-genome using machine learning algorithms. Many of the concepts outlined here can readily be applied to other complex plant and non-plant genomes.

15.
Funct Integr Genomics ; 13(3): 339-50, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23812960

ABSTRACT

Gene order is largely collinear in the small-grained cereals, a feature which has proved helpful in both marker development and positional cloning. The accuracy of a virtual gene order map ("genome zipper") for barley (Hordeum vulgare), developed by combining a genetic map of this species with a large number of gene locations obtained from the maps constructed in other grass species, was evaluated here both at the genome-wide level and at the fine scale in a representative segment of the genome. Comparing the whole genome "genome zipper" maps with a genetic map developed by using transcript-derived markers, yielded an accuracy of >94 %. The fine-scale comparison involved a 14 cM segment of chromosome arm 2HL. One hundred twenty-eight genes of the "genome zipper" interval were analysed. Over 95 % (45/47) of the polymorphic markers were genetically mapped and allocated to the expected region of 2HL, following the predicted order. A further 80 of the 128 genes were assigned to the correct chromosome arm 2HL by analysis of wheat-barley addition lines. All 128 gene-based markers developed were used to probe a barley bacterial artificial chromosome (BAC) library, delivering 26 BAC contigs from which all except two were anchored to the targeted zipper interval. The results demonstrate that the gene order predicted by the "genome zipper" is remarkably accurate and that the "genome zipper" represents a highly efficient informational resource for the systematic identification of gene-based markers and subsequent physical map anchoring of the barley genome.


Subject(s)
Genome, Plant , Hordeum/genetics , Physical Chromosome Mapping , Synteny/genetics , Chromosome Mapping , Expressed Sequence Tags , Oryza/genetics , Triticum/genetics
16.
Genome Biol ; 14(6): R64, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23800011

ABSTRACT

BACKGROUND: As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. RESULTS: Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. CONCLUSIONS: Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.


Subject(s)
Chromosomes, Plant/chemistry , Genome, Plant , Physical Chromosome Mapping/methods , Quantitative Trait Loci , Triticum/genetics , Biological Evolution , Brachypodium/genetics , Cloning, Molecular , Genetic Markers , High-Throughput Nucleotide Sequencing , Oryza/genetics , Sorghum/genetics , Synteny
17.
Proc Natl Acad Sci U S A ; 110(19): 7940-5, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23610408

ABSTRACT

The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,706 bacterial artificial chromosome clones, assembled contigs, designed a 10K Ae. tauschii Infinium SNP array, constructed a 7,185-marker genetic map, and anchored on the map contigs totaling 4.03 Gb. Using whole genome shotgun reads, we extended the SNP marker sequences and found 17,093 genes and gene fragments. We showed that collinearity of the Ae. tauschii genes with Brachypodium distachyon, rice, and sorghum decreased with phylogenetic distance and that structural genome evolution rates have been high across all investigated lineages in subfamily Pooideae, including that of Brachypodieae. We obtained additional information about the evolution of the seven Triticeae chromosomes from 12 ancestral chromosomes and uncovered a pattern of centromere inactivation accompanying nested chromosome insertions in grasses. We showed that the density of noncollinear genes along the Ae. tauschii chromosomes positively correlates with recombination rates, suggested a cause, and showed that new genes, exemplified by disease resistance genes, are preferentially located in high-recombination chromosome regions.


Subject(s)
Contig Mapping , Genome, Plant , Poaceae/genetics , Centromere/ultrastructure , Chromosomes, Artificial, Bacterial , Chromosomes, Plant/ultrastructure , Evolution, Molecular , Genes, Plant , Genetic Markers , Polymorphism, Single Nucleotide , Recombination, Genetic , Sequence Analysis, DNA , Triticum/genetics
18.
Theor Appl Genet ; 126(5): 1201-12, 2013 May.
Article in English | MEDLINE | ID: mdl-23456135

ABSTRACT

Soil-borne barley yellow mosaic virus disease, caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), is one of the most important diseases of winter barley (Hordeum vulgare L.) in Europe and East Asia. The recessive resistance gene rym11 located in the centromeric region of chromosome 4HL is effective against all so far known strains of BaMMV and BaYMV in Germany. In order to isolate this gene, a high-resolution mapping population (10,204 meiotic events) has been constructed. F2 plants were screened with co-dominant flanking markers and segmental recombinant inbred lines (RILs) were tested for resistance to BaMMV under growth chamber and field conditions. Tightly linked markers were developed by exploiting (1) publicly available barley EST sequences, (2) employing barley synteny to rice, Brachypodium distachyon and sorghum and (3) using next-generation sequencing data of barley. Using this approach, the genetic interval was efficiently narrowed down from the initial 10.72 % recombination to 0.074 % recombination. A marker co-segregating with rym11 was developed providing the basis for gene isolation and efficient marker-assisted selection.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Genes, Plant , Genomics , Hordeum/genetics , Immunity, Innate/genetics , Mosaic Viruses/pathogenicity , Plant Diseases/genetics , Chromosomes, Plant , DNA, Plant/genetics , Genetic Linkage , Genetic Markers , Hordeum/immunology , Hordeum/virology , Mosaic Viruses/genetics , Mosaic Viruses/immunology , Plant Diseases/virology , Synteny
19.
Nucleic Acids Res ; 41(Database issue): D1144-51, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23203886

ABSTRACT

The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.


Subject(s)
Databases, Genetic , Genome, Plant , Crops, Agricultural/genetics , Internet , Interspersed Repetitive Sequences , Multigene Family , Poaceae/genetics , Software
20.
Plant Physiol ; 161(2): 571-82, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23184232

ABSTRACT

Whole-genome sequences established for model and major crop species constitute a key resource for advanced genomic research. For outbreeding forage and turf grass species like ryegrasses (Lolium spp.), such resources have yet to be developed. Here, we present a model of the perennial ryegrass (Lolium perenne) genome on the basis of conserved synteny to barley (Hordeum vulgare) and the model grass genome Brachypodium (Brachypodium distachyon) as well as rice (Oryza sativa) and sorghum (Sorghum bicolor). A transcriptome-based genetic linkage map of perennial ryegrass served as a scaffold to establish the chromosomal arrangement of syntenic genes from model grass species. This scaffold revealed a high degree of synteny and macrocollinearity and was then utilized to anchor a collection of perennial ryegrass genes in silico to their predicted genome positions. This resulted in the unambiguous assignment of 3,315 out of 8,876 previously unmapped genes to the respective chromosomes. In total, the GenomeZipper incorporates 4,035 conserved grass gene loci, which were used for the first genome-wide sequence divergence analysis between perennial ryegrass, barley, Brachypodium, rice, and sorghum. The perennial ryegrass GenomeZipper is an ordered, information-rich genome scaffold, facilitating map-based cloning and genome assembly in perennial ryegrass and closely related Poaceae species. It also represents a milestone in describing synteny between perennial ryegrass and fully sequenced model grass genomes, thereby increasing our understanding of genome organization and evolution in the most important temperate forage and turf grass species.


Subject(s)
Chromosome Mapping/methods , Computational Biology/methods , Genome, Plant/genetics , Lolium/genetics , Brachypodium/genetics , Chromosomes, Plant/genetics , Genomics/methods , Oryza/genetics , Poaceae/classification , Poaceae/genetics , Reproducibility of Results , Sorghum/genetics , Synteny , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...