Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 20(3): 1062-1077, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38231855

ABSTRACT

Anisotropic patchy particles have become an archetypical statistical model system for associating fluids. Here, we formulate an approach to the Kern-Frenkel model via the classical density functional theory to describe the positionally and orientationally resolved equilibrium density distributions in flat wall geometries. The density functional is split into a reference part for the orientationally averaged density and an orientational part in mean-field approximation. To bring the orientational part into a kernel form suitable for machine learning (ML) techniques, an expansion into orientational invariants and the proper incorporation of single-particle symmetries are formulated. The mean-field kernel is constructed via ML on the basis of hard wall simulation data. The results are compared to the well-known random-phase approximation, which strongly underestimates the orientational correlations close to the wall. Successes and shortcomings of the mean-field treatment of the orientational part are highlighted and perspectives are given for attaining a full-density functional via ML.

2.
Artif Life ; 28(4): 458-478, 2022 01 01.
Article in English | MEDLINE | ID: mdl-35984417

ABSTRACT

It has long been hypothesized that operating close to the critical state is beneficial for natural and artificial evolutionary systems. We put this hypothesis to test in a system of evolving foraging agents controlled by neural networks that can adapt the agents' dynamical regime throughout evolution. Surprisingly, we find that all populations that discover solutions evolve to be subcritical. By a resilience analysis, we find that there are still benefits of starting the evolution in the critical regime. Namely, initially critical agents maintain their fitness level under environmental changes (for example, in the lifespan) and degrade gracefully when their genome is perturbed. At the same time, initially subcritical agents, even when evolved to the same fitness, are often inadequate to withstand the changes in the lifespan and degrade catastrophically with genetic perturbations. Furthermore, we find the optimal distance to criticality depends on the task complexity. To test it we introduce a hard task and a simple task: For the hard task, agents evolve closer to criticality, whereas more subcritical solutions are found for the simple task. We verify that our results are independent of the selected evolutionary mechanisms by testing them on two principally different approaches: a genetic algorithm and an evolutionary strategy. In summary, our study suggests that although optimal behaviour in the simple task is obtained in a subcritical regime, initializing near criticality is important to be efficient at finding optimal solutions for new tasks of unknown complexity.


Subject(s)
Nerve Agents , Neural Networks, Computer , Genome
3.
Sci Robot ; 7(63): eabm0608, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196071

ABSTRACT

Tactile feedback is essential to make robots more agile and effective in unstructured environments. However, high-resolution tactile skins are not widely available; this is due to the large size of robust sensing units and because many units typically lead to fragility in wiring and to high costs. One route toward high-resolution and robust tactile skins involves the embedding of a few sensor units (taxels) into a flexible surface material and the use of signal processing to achieve sensing with superresolution accuracy. Here, we propose a theory for geometric superresolution to guide the development of tactile sensors of this kind and link it to machine learning techniques for signal processing. This theory is based on sensor isolines and allows us to compute the possible force sensitivity and accuracy in contact position and force magnitude as a spatial quantity before building a sensor. We evaluate the influence of different factors, such as elastic properties of the material, structure design, and transduction methods, using finite element simulations and by implementing real sensors. We empirically determine sensor isolines and validate the theory in two custom-built sensors with 1D and 2D measurement surfaces that use barometric units. Using machine learning methods to infer contact information, our sensors obtain an average superresolution factor of over 100 and 1200, respectively. Our theory can guide future tactile sensor designs and inform various design choices.


Subject(s)
Machine Learning , Robotics , Touch
4.
Sensors (Basel) ; 21(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805587

ABSTRACT

Manual inspection of workpieces in highly flexible production facilities with small lot sizes is costly and less reliable compared to automated inspection systems. Reinforcement Learning (RL) offers promising, intelligent solutions for robotic inspection and manufacturing tasks. This paper presents an RL-based approach to determine a high-quality set of sensor view poses for arbitrary workpieces based on their 3D computer-aided design (CAD). The framework extends available open-source libraries and provides an interface to the Robot Operating System (ROS) for deploying any supported robot and sensor. The integration into commonly used OpenAI Gym and Baselines leads to an expandable and comparable benchmark for RL algorithms. We give a comprehensive overview of related work in the field of view planning and RL. A comparison of different RL algorithms provides a proof of concept for the framework's functionality in experimental scenarios. The obtained results exhibit a coverage ratio of up to 0.8 illustrating its potential impact and expandability. The project will be made publicly available along with this article.

5.
Front Robot AI ; 8: 668305, 2021.
Article in English | MEDLINE | ID: mdl-33842559
6.
Sci Rep ; 11(1): 3480, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568695

ABSTRACT

Cognitive fMRI research primarily relies on task-averaged responses over many subjects to describe general principles of brain function. Nonetheless, there exists a large variability between subjects that is also reflected in spontaneous brain activity as measured by resting state fMRI (rsfMRI). Leveraging this fact, several recent studies have therefore aimed at predicting task activation from rsfMRI using various machine learning methods within a growing literature on 'connectome fingerprinting'. In reviewing these results, we found lack of an evaluation against robust baselines that reliably supports a novelty of predictions for this task. On closer examination to reported methods, we found most underperform against trivial baseline model performances based on massive group averaging when whole-cortex prediction is considered. Here we present a modification to published methods that remedies this problem to large extent. Our proposed modification is based on a single-vertex approach that replaces commonly used brain parcellations. We further provide a summary of this model evaluation by characterizing empirical properties of where prediction for this task appears possible, explaining why some predictions largely fail for certain targets. Finally, with these empirical observations we investigate whether individual prediction scores explain individual behavioral differences in a task.

7.
Front Neurorobot ; 13: 51, 2019.
Article in English | MEDLINE | ID: mdl-31354467

ABSTRACT

Robust haptic sensation systems are essential for obtaining dexterous robots. Currently, we have solutions for small surface areas, such as fingers, but affordable and robust techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we introduce a general machine learning framework to infer multi-contact haptic forces on a 3D robot's limb surface from internal deformation measured by only a few physical sensors. The general idea of this framework is to predict first the whole surface deformation pattern from the sparsely placed sensors and then to infer number, locations, and force magnitudes of unknown contact points. We show how this can be done even if training data can only be obtained for single-contact points using transfer learning at the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors we obtain a high accuracy also for multiple-contact points. The method can be applied to arbitrarily shaped surfaces and physical sensor types, as long as training data can be obtained.

8.
PLoS Comput Biol ; 14(5): e1006057, 2018 05.
Article in English | MEDLINE | ID: mdl-29746463

ABSTRACT

Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed "pixel-by-pixel". We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains.


Subject(s)
Action Potentials/physiology , Computational Biology/methods , Models, Neurological , Retina/physiology , Animals , Male , Neural Networks, Computer , Nonlinear Dynamics , Rats , Rats, Long-Evans
9.
Front Neurorobot ; 11: 8, 2017.
Article in English | MEDLINE | ID: mdl-28360852

ABSTRACT

With the accelerated development of robot technologies, control becomes one of the central themes of research. In traditional approaches, the controller, by its internal functionality, finds appropriate actions on the basis of specific objectives for the task at hand. While very successful in many applications, self-organized control schemes seem to be favored in large complex systems with unknown dynamics or which are difficult to model. Reasons are the expected scalability, robustness, and resilience of self-organizing systems. The paper presents a self-learning neurocontroller based on extrinsic differential plasticity introduced recently, applying it to an anthropomorphic musculoskeletal robot arm with attached objects of unknown physical dynamics. The central finding of the paper is the following effect: by the mere feedback through the internal dynamics of the object, the robot is learning to relate each of the objects with a very specific sensorimotor pattern. Specifically, an attached pendulum pilots the arm into a circular motion, a half-filled bottle produces axis oriented shaking behavior, a wheel is getting rotated, and wiping patterns emerge automatically in a table-plus-brush setting. By these object-specific dynamical patterns, the robot may be said to recognize the object's identity, or in other words, it discovers dynamical affordances of objects. Furthermore, when including hand coordinates obtained from a camera, a dedicated hand-eye coordination self-organizes spontaneously. These phenomena are discussed from a specific dynamical system perspective. Central is the dedicated working regime at the border to instability with its potentially infinite reservoir of (limit cycle) attractors "waiting" to be excited. Besides converging toward one of these attractors, variate behavior is also arising from a self-induced attractor morphing driven by the learning rule. We claim that experimental investigations with this anthropomorphic, self-learning robot not only generate interesting and potentially useful behaviors, but may also help to better understand what subjective human muscle feelings are, how they can be rooted in sensorimotor patterns, and how these concepts may feed back on robotics.

10.
Proc Natl Acad Sci U S A ; 112(45): E6224-32, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26504200

ABSTRACT

Grounding autonomous behavior in the nervous system is a fundamental challenge for neuroscience. In particular, self-organized behavioral development provides more questions than answers. Are there special functional units for curiosity, motivation, and creativity? This paper argues that these features can be grounded in synaptic plasticity itself, without requiring any higher-level constructs. We propose differential extrinsic plasticity (DEP) as a new synaptic rule for self-learning systems and apply it to a number of complex robotic systems as a test case. Without specifying any purpose or goal, seemingly purposeful and adaptive rhythmic behavior is developed, displaying a certain level of sensorimotor intelligence. These surprising results require no system-specific modifications of the DEP rule. They rather arise from the underlying mechanism of spontaneous symmetry breaking, which is due to the tight brain body environment coupling. The new synaptic rule is biologically plausible and would be an interesting target for neurobiological investigation. We also argue that this neuronal mechanism may have been a catalyst in natural evolution.


Subject(s)
Behavior/physiology , Models, Neurological , Nervous System Physiological Phenomena/physiology , Neuronal Plasticity/physiology , Robotics/methods , Computer Simulation , Creativity , Exploratory Behavior , Humans , Motivation
11.
Front Psychol ; 4: 801, 2013.
Article in English | MEDLINE | ID: mdl-24204351

ABSTRACT

One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviors. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex behaviors, because a maximization of the PI corresponds to an exploration of morphology- and environment-dependent behavioral regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost.

12.
PLoS One ; 8(5): e63400, 2013.
Article in English | MEDLINE | ID: mdl-23723979

ABSTRACT

Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising way to avoid the curse of dimensionality which hinders learning systems to scale well.


Subject(s)
Robotics/methods , Algorithms , Animals , Artificial Intelligence , Behavior, Animal , Computer Simulation , Entropy , Information Theory , Markov Chains , Nonlinear Dynamics , Personal Autonomy
13.
Theory Biosci ; 131(3): 129-37, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22116785

ABSTRACT

Autonomous robots can generate exploratory behavior by self-organization of the sensorimotor loop. We show that the behavioral manifold that is covered in this way can be modified in a goal-dependent way without reducing the self-induced activity of the robot. We present three strategies for guided self-organization, namely by using external rewards, a problem-specific error function, or assumptions about the symmetries of the desired behavior. The strategies are analyzed for two different robots in a physically realistic simulation.


Subject(s)
Behavior , Learning , Neural Networks, Computer , Robotics/methods , Teaching , Robotics/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL
...