Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Steroid Biochem Mol Biol ; 39(1): 19-25, 1991 Jul.
Article in English | MEDLINE | ID: mdl-2069861

ABSTRACT

The regulation of the production of steroids and steroid sulfates and the activity of aromatase in human luteinized granulosa cells were investigated. The cells were cultured for 48 h in the presence or absence of hCG and FSH. Basal production of pregnenolone (Pre, 0.3 +/- 0.03 ng/micrograms protein) and progesterone (P, 19.3 +/- 1.7 ng/micrograms protein) were high compared with that of other steroids beyond P in the steroidogenic pathway. The concentration of 17 alpha-hydroxyprogesterone (17-OHP) was lower 0.17 +/- 0.06 ng/micrograms and that of other steroids in the 4-ene and 5-ene pathways and steroid sulfates less than 0.05 ng/micrograms. Both hCG and FSH (100 ng/ml) stimulated the production of Pre and P 3- to 5-fold, but only minimal stimulation of other steroids and steroid sulfates was observed. Aromatase activity of granulosa-luteal cells was measured from the rate of formation of 3H2O from 1 beta-[3H]androstenedione (1 beta[3H]A) after exposing the cells to hCG, FSH or estradiol (E2) for 48 h. Basal aromatase activity was relatively low, but hCG and FSH stimulated aromatase 8- and 4-fold, respectively. The incubation of granulosa-luteal cells with E2 did not affect basal aromatase activity, but E2 augmented FSH-stimulated aromatase 1.4-fold (P less than 0.025). The results suggest that there is low 17 alpha-hydroxylase and steroid sulfokinase activity in human granulosa-luteal cells. Aromatase activity in these cells is regulated by both hCG and FSH, and intra-ovarian estrogens may regulate granulosa cell aromatase activity.


Subject(s)
Aromatase/metabolism , Estrogens/biosynthesis , Granulosa Cells/metabolism , Cells, Cultured , Estradiol/pharmacology , Female , Gonadotropins, Pituitary/pharmacology , Granulosa Cells/enzymology , Humans , Pregnenolone/biosynthesis , Progesterone/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...