Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Neurosurg ; 140(1): 231-239, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37329519

ABSTRACT

OBJECTIVE: There were more than 107,000 drug overdose deaths in the US in 2021, the most ever recorded. Despite advances in behavioral and pharmacological treatments, over 50% of those receiving treatment for opioid use disorder (OUD) experience drug use recurrence (relapse). Given the prevalence of OUD and other substance use disorders (SUDs), the high rate of drug use recurrence, and the number of drug overdose deaths, novel treatment strategies are desperately needed. The objective of this study was to evaluate the safety and feasibility of deep brain stimulation (DBS) targeting the nucleus accumbens (NAc)/ventral capsule (VC) and potential impact on outcomes in individuals with treatment-refractory OUD. METHODS: A prospective, open-label, single-arm study was conducted among participants with longstanding treatment-refractory OUD (along with other co-occurring SUDs) who underwent DBS in the NAc/VC. The primary study endpoint was safety; secondary/exploratory outcomes included opioid and other substance use, substance craving, and emotional symptoms throughout follow-up and 18FDG-PET neuroimaging. RESULTS: Four male participants were enrolled and all tolerated DBS surgery well with no serious adverse events (AEs) and no device- or stimulation-related AEs. Two participants sustained complete substance abstinence for > 1150 and > 520 days, respectively, with significant post-DBS reductions in substance craving, anxiety, and depression. One participant experienced post-DBS drug use recurrences with reduced frequency and severity. The DBS system was explanted in one participant due to noncompliance with treatment requirements and the study protocol. 18FDG-PET neuroimaging revealed increased glucose metabolism in the frontal regions for the participants with sustained abstinence only. CONCLUSIONS: DBS of the NAc/VC was safe, feasible, and can potentially reduce substance use, craving, and emotional symptoms in those with treatment-refractory OUD. A randomized, sham-controlled trial in a larger cohort of patients is being initiated.


Subject(s)
Deep Brain Stimulation , Drug Overdose , Opioid-Related Disorders , Humans , Male , Nucleus Accumbens/diagnostic imaging , Deep Brain Stimulation/methods , Fluorodeoxyglucose F18 , Prospective Studies , Feasibility Studies , Neoplasm Recurrence, Local , Opioid-Related Disorders/therapy
2.
Front Psychiatry ; 14: 1211566, 2023.
Article in English | MEDLINE | ID: mdl-37779628

ABSTRACT

Introduction: While current treatments for substance use disorder (SUD) are beneficial, success rates remain low and treatment outcomes are complicated by co-occurring SUDs, many of which are without available medication treatments. Research involving neuromodulation for SUD has recently gained momentum. This study evaluated two doses (60 and 90 W) of Low Intensity Focused Ultrasound (LIFU), targeting the bilateral nucleus accumbens (NAc), in individuals with SUD. Methods: Four participants (three male), who were receiving comprehensive outpatient treatment for opioid use disorder at the time of enrollment and who also had a history of excessive non-opioid substance use, completed this pilot study. After confirming eligibility, these participants received 10 min sham LIFU followed by 20 min active LIFU (10 min to left then right NAc). Outcomes were the safety, tolerability, and feasibility during the LIFU procedure and throughout the 90-day follow-up. Outcomes also included the impact of LIFU on cue-induced substance craving, assessed via Visual Analog Scale (VAS), both acutely (pre-, during and post-procedure) and during the 90-day follow-up. Daily craving ratings (without cues) were also obtained for one-week prior to and one-week following LIFU. Results: Both LIFU doses were safe and well-tolerated based on reported adverse events and MRI scans revealed no structural changes (0 min, 24 h, and 1-week post-procedure). For the two participants receiving "enhanced" (90 W) LIFU, VAS craving ratings revealed active LIFU attenuated craving for participants' primary substances of choice relative to sham sonication. For these participants, reductions were also noted in daily VAS craving ratings (0 = no craving; 10 = most craving ever) across the week following LIFU relative to pre-LIFU; Participant #3 pre- vs. post-LIFU: opioids (3.6 ± 0.6 vs. 1.9 ± 0.4), heroin (4.2 ± 0.8 vs. 1.9 ± 0.4), methamphetamine (3.2 ± 0.4 vs. 0.0 ± 0.0), cocaine (2.4 ± 0.6 vs. 0.0 ± 0.0), benzodiazepines (2.8 ± 0.5 vs. 0.0 ± 0.0), alcohol (6.0 ± 0.7 vs. 2.7 ± 0.8), and nicotine (5.6 ± 1.5 vs. 3.1 ± 0.7); Participant #4: alcohol (3.5 ± 1.3 vs. 0.0 ± 0.0) and nicotine (5.0 ± 1.8 vs. 1.2 ± 0.8) (all p's < 0.05). Furthermore, relative to screening, longitudinal reductions in cue-induced craving for several substances persisted during the 90-day post-LIFU follow-up evaluation for all participants. Discussion: In conclusion, LIFU targeting the NAc was safe and acutely reduced substance craving during the LIFU procedure, and potentially had longer-term impact on craving reductions. While early observations are promising, NAc LIFU requires further investigation in a controlled trial to assess the impact on substance craving and ultimately substance use and relapse.

4.
Drug Alcohol Depend ; 249: 110817, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37331302

ABSTRACT

BACKGROUND: Identifying predictors of drug use recurrence (DUR) is critical to combat the addiction epidemic. Wearable devices and phone-based applications for obtaining self-reported assessments in the patient's natural environment (e.g., ecological momentary assessment; EMA) have been used in various healthcare settings. However, the utility of combining these technologies to predict DUR in substance use disorder (SUD) has not yet been explored. This study investigates the combined use of wearable technologies and EMA as a potential mechanism for identifying physiological/behavioral biomarkers of DUR. METHODS: Participants, recruited from an SUD treatment program, were provided with a commercially available wearable device that continuously monitors biometric signals (e.g., heart rate/variability [HR/HRV], sleep characteristics). They were also prompted daily to complete an EMA via phone-based application (EMA-APP) that included questionnaires regarding mood, pain, and craving. RESULTS: Seventy-seven participants are included in this pilot study (34 participants experienced a DUR during enrollment). Wearable technologies revealed that physiological markers were significantly elevated in the week prior to DUR relative to periods of sustained abstinence (p<0.001). Results from the EMA-APP revealed that those who experienced a DUR reported greater difficulty concentrating, exposure to triggers associated with substance use, and increased isolation the day prior to DUR (p<0.001). Compliance with study procedures during the DUR week was lower than any other period of measurement (p<0.001). CONCLUSIONS: These results suggest that data acquired via wearable technologies and the EMA-APP may serve as a method of predicting near-term DUR, thereby potentially prompting intervention before drug use occurs.


Subject(s)
Substance-Related Disorders , Wearable Electronic Devices , Humans , Pilot Projects , Substance-Related Disorders/diagnosis , Surveys and Questionnaires , Smartphone , Ecological Momentary Assessment
5.
Drug Alcohol Depend ; 247: 109865, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37094488

ABSTRACT

BACKGROUND: In 2021, while overdose (OD) deaths were at the highest in recorded history, it is estimated that >80% of ODs do not result in a fatality. While several case studies have indicated that opioid-related ODs can result in cognitive impairment, the possible association has not yet been systematically investigated. METHODS: 78 participants with a history of OUD who reported experiencing an OD in the past year (n=35) or denied a lifetime history of OD (n=43) completed this study. Participants completed cognitive assessments including the Test of Premorbid Functioning (TOPF) and the NIH Toolbox Cognition Battery (NIHTB-CB). Comparisons were made between those who experienced an opioid-related OD in the past year versus those who denied a lifetime OD history while controlling for factors including age, premorbid functioning, and number of prior ODs. RESULTS: When comparing those who experienced an opioid-related OD within the past year to those without a history of OD, uncorrected standard scores were generally comparable; however, differences emerged in the multivariable model. Specifically, compared to those without a history of OD, those who experienced a past year OD evidenced significantly lower total cognition composite scores (coef. = -7.112; P=0.004), lower crystalized cognition composite scores (coef. = -4.194; P=0.009), and lower fluid cognition composite scores (coef. = -7.879; P=0.031). CONCLUSIONS: Findings revealed that opioid-related ODs may be associated with, or contribute to, reduced cognition. Extent of the impairment appears contingent upon individuals' premorbid intellectual functioning and the cumulative number of past ODs. While statistically significant, clinical significance may be limited given that performance differences (∼4 - 8 points) were not particularly robust. More rigorous investigation is warranted, and future studies must also account for the many other variables possibly contributing to cognitive impairment.


Subject(s)
Cognitive Dysfunction , Drug Overdose , Opiate Overdose , Humans , Analgesics, Opioid/adverse effects , Pilot Projects , Opiate Overdose/drug therapy , Drug Overdose/drug therapy , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/diagnosis , Neuropsychological Tests
6.
Exp Clin Psychopharmacol ; 29(2): 210-215, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34043402

ABSTRACT

Given high relapse rates and the prevalence of overdose deaths, novel treatments for substance use disorder (SUD) are desperately needed for those who are treatment refractory. The objective of this study was to evaluate the safety of deep brain stimulation (DBS) for SUD and the effects of DBS on substance use, substance craving, emotional symptoms, and frontal/executive functions. DBS electrodes were implanted bilaterally within the Nucleus Accumbens/Ventral anterior internal capsule (NAc/VC) of a man in his early 30s with >10-year history of severe treatment refractory opioid and benzodiazepine use disorders. DBS of the NAc/VC was found to be safe with no serious adverse events noted and the participant remained abstinent and engaged in comprehensive treatment at the 12-week endpoint (and 12-month extended follow-up). Using a 0-100 visual analog scale, substance cravings decreased post-DBS implantation; most substantially in benzodiazepine craving following the final DBS titration (1.0 ± 2.2) compared to baseline (53.4 ± 29.5; p < .001). A trend toward improvement in frontal/executive function was observed on the balloon analog risk task performance following the final titration (217.7 ± 76.2) compared to baseline (131.3 ± 28.1, p = .066). FDG PET demonstrated an increase in glucose metabolism in the dorsolateral prefrontal and medial premotor cortices at the 12-week endpoint compared to post-surgery/pre-DBS titration. Heart Rate Variability (HRV) improved following the final titration (rMSSD = 56.0 ± 11.7) compared to baseline (19.2 ± 8.2; p < .001). In a participant with severe, treatment refractory opioid and benzodiazepine use disorder, DBS of the NAc/VC was safe, reduced substance use and craving, and improved frontal and executive functions. Confirmation of these findings with future studies is needed. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Subject(s)
Benzodiazepines , Deep Brain Stimulation , Nucleus Accumbens , Substance-Related Disorders/therapy , Adult , Analgesics, Opioid/adverse effects , Benzodiazepines/adverse effects , Humans , Internal Capsule , Male , Pilot Projects
7.
Addict Behav ; 114: 106752, 2021 03.
Article in English | MEDLINE | ID: mdl-33348147

ABSTRACT

OBJECTIVE: Funding to address the current opioid epidemic has focused on treatment of opioid use disorder (OUD); however, rates of other substance use disorders (SUDs) remain high and non-opioid related overdoses account for nearly 30% of overdoses. This study assesses the prevalence of co-occurring substance use in West Virginia (WV) to inform treatment strategies. The objective of this study was to assess the prevalence of, and demographic and clinical characteristics (including age, gender, hepatitis C virus (HCV) status) associated with, co-occurring substance use among patients with OUD in WV. METHODS: This retrospective study utilized the West Virginia Clinical and Translation Science Institute Integrated Data Repository, comprised of Electronic Medical Record (EMR) data from West Virginia University Medicine. Deidentified data were extracted from inpatient psychiatric admissions and emergency department (ED) healthcare encounters between 2009 and 2018. Eligible patients were those with OUD who had a positive urine toxicology screen for opioids at the time of their initial encounter with the healthcare system. Extracted data included results of comprehensive urine toxicology testing during the study timeframe. RESULTS: 3,127 patients met the inclusion criteria of whom 72.8% had co-occurring substance use. Of those who were positive for opioids and at least one additional substance, benzodiazepines were the most common co-occurring substances (57.4% of patients yielded a positive urine toxicology screen for both substances), followed by cannabis (53.1%), cocaine (24.5%) and amphetamine (21.6%). Individuals who used co-occurring substances were younger than those who were positive for opioids alone (P < 0.001). There was a higher prevalence of individuals who used co-occurring substances that were HCV positive in comparison to those who used opioids alone (P < 0.001). There were limited gender differences noted between individuals who used co-occurring substances and those who used opioids alone. Among ED admissions who were positive for opioids, 264 were diagnosed with substance toxicity/overdose, 78.4% of whom had co-occurring substance use (benzodiazepines: 65.2%; cannabis: 44.4%; cocaine: 28.5%; amphetamine: 15.5%). Across the 10-year timespan, the greatest increase for the entire sample was in the rate of co-occurring amphetamine and opioid use (from 12.6% in 2014 to 47.8% in 2018). CONCLUSIONS: These data demonstrate that the current substance use epidemic extends well beyond opioids, suggesting that comprehensive SUD prevention and treatment strategies are needed, especially for those substances which do not yet have any evidence-based and/or medication treatments available.


Subject(s)
Drug Overdose , Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Drug Overdose/drug therapy , Drug Overdose/epidemiology , Humans , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/epidemiology , Prevalence , Retrospective Studies , West Virginia/epidemiology
8.
PLoS One ; 10(9): e0138222, 2015.
Article in English | MEDLINE | ID: mdl-26375467

ABSTRACT

Coxsackievirus type B3 (CVB3) is a cardiotropic enterovirus. Infection causes cardiomyocyte necrosis and myocardial inflammation. The damaged tissue that results is replaced with fibrotic or calcified tissue, which can lead to permanently altered cardiac function. The extent of pathogenesis among individuals exposed to CVB3 is dictated by a combination of host genetics, viral virulence, and the environment. Here, we aimed to identify genes that modulate cardiopathology following CVB3 infection. 129S1 mice infected with CVB3 developed increased cardiac pathology compared to 129X1 substrain mice despite no difference in viral burden. Linkage analysis identified a major locus on chromosome 7 (LOD: 8.307, P<0.0001) that controlled the severity of cardiac calcification and necrosis following infection. Sub-phenotyping and genetic complementation assays identified Abcc6 as the underlying gene. Microarray expression profiling identified genotype-dependent regulation of genes associated with mitochondria. Electron microscopy examination showed elevated deposition of hydroxyapatite-like material in the mitochondrial matrices of infected Abcc6 knockout (Abcc6-/-) mice but not in wildtype littermates. Cyclosporine A (CsA) inhibits mitochondrial permeability transition pore opening by inhibiting cyclophilin D (CypD). Treatment of Abcc6 -/- mice with CsA reduced cardiac necrosis and calcification by more than half. Furthermore, CsA had no effect on the CVB3-induced phenotype of doubly deficient CypD-/-Abcc6-/- mice. Altogether, our work demonstrates that mutations in Abcc6 render mice more susceptible to cardiac calcification following CVB3 infection. Moreover, we implicate CypD in the control of cardiac necrosis and calcification in Abcc6-deficient mice, whereby CypD inhibition is required for cardioprotection.


Subject(s)
ATP-Binding Cassette Transporters/physiology , Calcinosis/drug therapy , Coxsackievirus Infections/drug therapy , Cyclosporine/pharmacology , Enterovirus B, Human/drug effects , Inflammation/drug therapy , Myocarditis/drug therapy , Animals , Calcinosis/pathology , Calcinosis/virology , Coxsackievirus Infections/pathology , Coxsackievirus Infections/virology , Peptidyl-Prolyl Isomerase F , Cyclophilins/metabolism , Female , Immunosuppressive Agents/pharmacology , Inflammation/pathology , Inflammation/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Permeability Transition Pore , Multidrug Resistance-Associated Proteins , Myocarditis/pathology , Myocarditis/virology , Necrosis
10.
Front Immunol ; 3: 425, 2012.
Article in English | MEDLINE | ID: mdl-23346087

ABSTRACT

The association of Natural Killer (NK) cell deficiencies with disease susceptibility has established a central role for NK cells in host defence. In this context, genetic approaches have been pivotal in elucidating and characterizing the molecular mechanisms underlying NK cell function. To this end, homozygosity mapping and linkage analysis in humans have identified mutations that impact NK cell function and cause life-threatening diseases. However, several critical restrictions accompany genetic studies in humans. Studying NK cell pathophysiology in a mouse model has therefore proven a useful tool. The relevance of the mouse model is underscored by the similarities that exist between cell-structure-sensing receptors and the downstream signaling that leads to NK cell activation. In this review, we provide an overview of how human and mouse quantitative trait locis (QTLs) have facilitated the identification of genes that modulate NK cell development, recognition, and killing of target cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...