Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 23(7): 905-911, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710799

ABSTRACT

Topologically protected spin whirls in ferromagnets are foreseen as the cart-horse of solitonic information technologies. Nevertheless, the future of skyrmionics may rely on antiferromagnets due to their immunity to dipolar fields, straight motion along the driving force and ultrafast dynamics. While complex topological objects were recently discovered in intrinsic antiferromagnets, mastering their nucleation, stabilization and manipulation with energy-efficient means remains an outstanding challenge. Designing topological polar states in magnetoelectric antiferromagnetic multiferroics would allow one to electrically write, detect and erase topological antiferromagnetic entities. Here we stabilize ferroelectric centre states using a radial electric field in multiferroic BiFeO3 thin films. We show that such polar textures contain flux closures of antiferromagnetic spin cycloids, with distinct antiferromagnetic entities at their cores depending on the electric field polarity. By tuning the epitaxial strain, quadrants of canted antiferromagnetic domains can also be electrically designed. These results open the path to reconfigurable topological states in multiferroic antiferromagnets.

2.
Adv Mater ; 35(11): e2207665, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36545705

ABSTRACT

Domain boundaries in ferroic materials are found to have various physical properties not observed in the surrounding domains. Such differences can be enhanced and bring promising functionalities when centrosymmetric nonpolar materials encounter polar domain boundaries. In this work, a tunable polar domain boundary is discovered in an antiferroelectric single crystal. Under a small stress or electric field, the density, volume, and polarity of the boundaries are successfully controlled.

3.
Nat Mater ; 20(4): 495-502, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33398118

ABSTRACT

Simultaneous manipulation of multiple boundary conditions in nanoscale heterostructures offers a versatile route to stabilizing unusual structures and emergent phases. Here, we show that a stable supercrystal phase comprising a three-dimensional ordering of nanoscale domains with tailored periodicities can be engineered in PbTiO3-SrRuO3 ferroelectric-metal superlattices. A combination of laboratory and synchrotron X-ray diffraction, piezoresponse force microscopy, scanning transmission electron microscopy and phase-field simulations reveals a complex hierarchical domain structure that forms to minimize the elastic and electrostatic energy. Large local deformations of the ferroelectric lattice are accommodated by periodic lattice modulations of the metallic SrRuO3 layers with curvatures up to 107 m-1. Our results show that multidomain ferroelectric systems can be exploited as versatile templates to induce large curvatures in correlated materials, and present a route for engineering correlated materials with modulated structural and electronic properties that can be controlled using electric fields.

4.
ACS Appl Mater Interfaces ; 12(50): 56251-56259, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33270441

ABSTRACT

Lattice strain in oxygen ion conductors can be used to tune their functional properties for applications in fuel cells, sensors, or catalysis. However, experimental measurements of thin film strain in both in- and out-of-plane directions can be experimentally challenging. We propose a method for measuring strain in rare-earth doped ceria thin films by polarized Raman spectroscopy. We study epitaxial CeO2 films substituted by La, Gd, and Yb grown on MgO substrates with BaZrO3 and SrTiO3 interlayers, where different levels of strain are generated by annealing at distinct temperatures. The films show in-plane compression and out-of-plane expansion, resulting in a lowering from the bulk cubic to tetragonal lattice symmetry. This leads to the splitting of the F2g Raman mode in the cubic phase to B2g and Eg modes in the tetragonal lattice. The symmetry and frequency of these modes are determined by polarized Raman in the backscattering and right-angle scattering geometries as well as by first-principal calculations. The frequency splitting of the two modes is proportional to the strain measured by X-ray diffraction and its magnitude agrees with first-principles calculations. The results offer a fast, nondestructive, and precise method for measuring both in- and out-of-plane strain in ceria and can be readily applied to other ionic conductors.

5.
Phys Rev Lett ; 119(5): 057604, 2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28949744

ABSTRACT

The dielectric permittivity and properties of electrically active lattice resonances in nanotwinned BiFeO_{3} crystals have been studied theoretically using an earlier established interatomic potential. The results suggest that an array of 71° domain walls with about 2-5 nm spacing enhances the static permittivity of BiFeO_{3} by more than an order of magnitude. This enhancement is associated with an electrically active excitation, corresponding to a collective vibration of pinned domain walls at a remarkably high frequency of about 0.3 THz.

6.
J Phys Condens Matter ; 24(38): 385404, 2012 Sep 26.
Article in English | MEDLINE | ID: mdl-22945595

ABSTRACT

The full elastic tensor of orthorhombic dysprosium scandate (DyScO(3)) at room temperature was determined by resonant ultrasound spectroscopy (RUS). Measurements were performed on three 500 µm thick substrates with orientations (110), (100) and (001) in the Pbnm (a < b < c) setting. For this purpose, a modification of the RUS method was developed, enabling simultaneous processing of the resonant spectra of several platelet-shaped samples with different crystallographic orientations. The obtained results are compared with ab initio calculations and with elastic constants of other rare-earth scandates, and are used for discussion of the in-plane elasticity of the (110)-oriented substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...