Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Physiol Biochem ; 123: 400-405, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29306187

ABSTRACT

HeT (1-0-galloyl-2,3; 4,6-bis-hexahydroxydiphenoyl-ß-D-glucopyranose) is a penta-esterified ellagitannin obtained from strawberry leaves. Previous studies have shown that foliar application of HeT prior to inoculation with a virulent pathogen increases the resistance toward Colletotrichum acutatum in strawberry plants and to Xanthomonas citri subsp. citri in lemon plants. In this work we report that HeT induces an immediate leak of electrolytes, the hyperpolarization of the cellular membrane, a rapid Ca2+ influx to the cytoplasm during the first few seconds, which in turn modulates the accumulation of nitric oxide 5 min after treatment. At longer times, a biphasic accumulation of H2O2 with peaks at 2 and 5 h post treatment could be observed. In addition, HeT elicited the increase of alternative oxidase capacity during the first 12 h post treatment.


Subject(s)
Calcium/metabolism , Fragaria/metabolism , Hydrogen Peroxide/metabolism , Hydrolyzable Tannins/pharmacology , Nitric Oxide/metabolism , Calcium Signaling , Electrolytes/metabolism , Fragaria/microbiology , Plant Diseases/microbiology , Xanthomonas/metabolism
2.
Mol Plant Microbe Interact ; 31(1): 46-60, 2018 01.
Article in English | MEDLINE | ID: mdl-28635519

ABSTRACT

The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.


Subject(s)
Acremonium/physiology , Disease Resistance , Fragaria/immunology , Fragaria/microbiology , Fungal Proteins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Respiratory Burst , Subtilisin/metabolism , Cell Death/genetics , Cell Wall/metabolism , Fluorescence , Fragaria/genetics , Gene Expression Regulation, Plant , Genes, Plant , Lignin/metabolism , Necrosis , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases/genetics , Plant Leaves/microbiology , Salicylic Acid/metabolism
3.
Plant Physiol Biochem ; 97: 443-50, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26562675

ABSTRACT

The newly characterized elicitor AsES obtained from Acremonium strictum induces a strong defence response in strawberry plants and confers plants resistance against the fungal pathogen Colletotricum acutatum the casual agent of anthracnose disease. Previous studies showed that AsES causes the accumulation of reactive oxygen species (ROS) that peaked 4 h post treatment (hpt), but due to the experimental approach used it was not clear whether the accumulation of ROS observed was intracellular or extracellular or took place as a single peak. By using a different experimental setup, a more complex early events associated to the activation of the innate immunity were observed. In this paper we report that strawberry plant cells treated with AsES exhibits a triphasic production of H2O2 and a rapid intracellular accumulation of NO. The first phase consists in a progressive extracellular accumulation of H2O2 that starts immediately after the treatment with AsES and is preceded by a rapid and transient cell membrane depolarization. During this phase takes place also a rapid intracellular accumulation of NO. Microscopic observations of mesophyll cells treated with AsES reveals that NO accumulates at the chloroplast. After the first extracellular H2O2 production phase, two intracellular H2O2 accumulation events occur, the first 2 hpt, and the second 7 hpt. Cells treated with AsES also show a transient increase of ion leakage, and a progressive alkalinization of the extracellular medium.


Subject(s)
Acremonium/chemistry , Cell Membrane/metabolism , Fragaria/metabolism , Fungal Proteins/pharmacology , Membrane Potentials/drug effects , Nitric Oxide/metabolism , Respiratory Burst/drug effects , Alkalies/metabolism , Arylsulfonates/metabolism , Cell Membrane/drug effects , Cell Respiration/drug effects , Cell Survival/drug effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Fluorescence , Fragaria/cytology , Fragaria/drug effects , Hydrogen Peroxide/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Ions , Mesophyll Cells/drug effects , Mesophyll Cells/metabolism , Suspensions , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...