Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 61(3): 597-607, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16175628

ABSTRACT

A recently reported dual-chain avidin was modified further to contain two distinct, independent types of ligand-binding sites within a single polypeptide chain. Chicken avidin is normally a tetrameric glycoprotein that binds water-soluble d-biotin with extreme affinity (K(d) approximately 10(-15) M). Avidin is utilized in various applications and techniques in the life sciences and in the nanosciences. In a recent study, we described a novel avidin monomer-fusion chimera that joins two circularly permuted monomers into a single polypeptide chain. Two of these dual-chain avidins were observed to associate spontaneously to form a dimer equivalent to the wt tetramer. In the present study, we successfully used this scaffold to generate avidins in which the neighboring biotin-binding sites of dual-chain avidin exhibit two different affinities for biotin. In these novel avidins, one of the two binding sites in each polypeptide chain, the pseudodimer, is genetically modified to have lower binding affinity for biotin, whereas the remaining binding site still exhibits the high-affinity characteristic of the wt protein. The pseudotetramer (i.e., a dimer of dual-chain avidins) has two high and two lower affinity biotin-binding sites. The usefulness of these novel proteins was demonstrated by immobilizing dual-affinity avidin with its high-affinity sites. The sites with lower affinity were then used for affinity purification of a biotinylated enzyme. These "dual-affinity" avidin molecules open up wholly new possibilities in avidin-biotin technology, where they may have uses as novel bioseparation tools, carrier proteins, or nanoscale adapters.


Subject(s)
Avidin/chemistry , Animals , Avidin/biosynthesis , Avidin/isolation & purification , Binding Sites , Chickens , Chromatography, Affinity , Fluorescent Dyes , Protein Binding , Protein Structure, Secondary , Temperature , Thermodynamics
2.
Mol Ther ; 9(2): 282-91, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14759812

ABSTRACT

Flexible alteration of virus surface properties would be beneficial for enhanced and targeted gene delivery. A useful approach could be based on a high-affinity receptor-ligand pair, such as avidin and biotin. In this study, we have constructed an avidin-displaying baculovirus, Baavi. Avidin display was expected to enhance cell transduction due to the high positive charge of avidin in physiological pH and to provide a binding site for covering the virus with desired biotinylated ligands. Successful incorporation of avidin on the virus envelope was detected by immunoblotting and electron microscopy. Multiple biotin-binding sites per virus were detected with fluorescence-correlation spectroscopy and tight biotin binding was observed using an optical biosensor, IAsys. Baavi showed a 5-fold increase in transduction efficiency in rat malignant glioma cells (BT4C) and a 26-fold increase in rabbit aortic smooth muscle (RAASMC) cells compared to wild-type baculovirus. Enhanced transduction was also observed with biotinylated target cells. Biotinylated epidermal growth factor (EGF) enabled specific targeting of the virus with high efficiency to EGF receptor-expressing (SKOV-3) cells. An additional advantage of the avidin display was demonstrated with biotinylated paramagnetic particles, which enabled magnetic targeting. Altogether, we show that avidin display is a rapid and versatile method to improve viral properties for gene delivery.


Subject(s)
Avidin/metabolism , Baculoviridae/genetics , Baculoviridae/physiology , Gene Transfer Techniques , Animals , Avidin/genetics , Biosensing Techniques , Biotin/metabolism , Biotinylation , Cell Line , Cell Line, Tumor , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Genetic Vectors/genetics , Genetic Vectors/physiology , Protein Binding , Rabbits , Rats , Spectrometry, Fluorescence , Transduction, Genetic , Viral Fusion Proteins/genetics , Viral Fusion Proteins/metabolism
3.
Biochem J ; 372(Pt 1): 219-25, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12558501

ABSTRACT

Chicken avidin and bacterial streptavidin are proteins used in a wide variety of applications in the life sciences due to their strong affinity for biotin. A new and promising use for them is in medical pretargeting cancer treatments. However, their pharmacokinetics and immunological properties are not always optimal, thereby limiting their use in these applications. To search for potentially beneficial new candidates, we screened egg white from four different poultry species for avidin. Avidin proteins, isolated from the duck, goose, ostrich and turkey, showed a similar tetrameric structure, similar glycosylation and stability against both temperature and proteolytic activity of proteinase K as chicken avidin. Biotin-binding properties of these avidins, measured using IAsys optical biosensor, were similar to those found in avidin from the chicken. Three of these novel avidins, however, showed different immunological cross-reactivities when compared with chicken avidin. The patient sera responses to duck, goose and ostrich avidins were also lower than those observed for chicken and turkey avidins. Our findings suggest that the use of these proteins offers advantages over chicken avidin and bacterial streptavidin in pretargeting applications.


Subject(s)
Avidin/metabolism , Birds/metabolism , Neoplasms/drug therapy , Animals , Antibodies , Avidin/genetics , Avidin/isolation & purification , Biotin/metabolism , Birds/genetics , Phylogeny , Protein Binding , Sequence Analysis, Protein
4.
J Biol Chem ; 278(6): 4010-4, 2003 Feb 07.
Article in English | MEDLINE | ID: mdl-12458212

ABSTRACT

Homotetrameric chicken avidin that binds four molecules of biotin was converted to a monomeric form (monoavidin) by mutations of two interface residues: tryptophan 110 in the 1 --> 2 interface was mutated to lysine and asparagine 54 in the 1 --> 4 interface was converted to alanine. The affinity for biotin binding of the mutant decreased from K(d) approximately 10(-15) m of the wild-type tetramer to K(d) approximately 10(-7) m, which was studied by an optical biosensor IAsys and by a fluorescence spectroscopical method in solution. The binding was completely reversible. Conversion of the tetramer to a monomer results in increased sensitivity to proteinase K digestion. The antigenic properties of the mutated protein were changed, such that monoavidin was only partially recognized by a polyclonal antibody whereas two different monoclonal antibodies entirely failed to recognize the avidin monomer. This new monomeric avidin, which binds biotin reversibly, may be useful for applications both in vitro and in vivo. It may also shed light on the effect of intersubunit interactions on the binding of ligands.


Subject(s)
Avidin/chemistry , Animals , Avidin/genetics , Avidin/isolation & purification , Avidin/metabolism , Baculoviridae/genetics , Biopolymers , Biotin/metabolism , Chickens , Chromatography, Gel , Enzyme-Linked Immunosorbent Assay , Models, Molecular , Mutagenesis , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
5.
Biochem J ; 369(Pt 2): 249-54, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12358604

ABSTRACT

The strong interaction between avidin and biotin is so tight (dissociation constant 10(-15) M) that conditions usually sufficient for protein denaturing fail to dislodge biotin from the avidin-biotin complex. This kind of irreversible binding hinders the use of avidin in applications such as affinity purification or protein immobilization. To address this concern, we have constructed a series of mutants of the strategically positioned Tyr-33 in order to study the role of this residue in biotin binding, and to create avidin variants with more reversible ligand-binding properties. Unexpectedly, an avidin mutant in which Tyr-33 was replaced with phenylalanine (Avm-Y33F) displayed similar biotin-binding characteristics to the native avidin, indicating that the hydrogen bond formed between the hydroxy group of Tyr-33 and the carbonyl oxygen of biotin is not as important for the tight binding of biotin as previously suggested. In terms of the reversibility of biotin binding, Avm-Y33H was the most successful substitution constructed in this study. Interestingly, the binding of this mutant exhibited clear pH-dependence, since at neutral pH it bound to the biotin surface in an irreversible fashion, whereas, at pH 9, 50% of the bound protein could be released with free biotin. Furthermore, although Tyr-33 is located relatively distant from the monomer-monomer interfaces, the mutagenesis of this residue also weakened the quaternary structure of avidin, indicating that the high ligand binding and the high stability of avidin have evolved together and it is difficult to modify one without affecting the other.


Subject(s)
Avidin/chemistry , Avidin/genetics , Chickens , Mutation , Tyrosine/metabolism , Animals , Avidin/metabolism , Binding Sites , Biotin/chemistry , Biotin/metabolism , Endopeptidase K/metabolism , Hydrogen Bonding , Hydrogen-Ion Concentration , Ligands , Molecular Structure , Mutagenesis, Site-Directed , Oxygen/metabolism , Protein Binding , Temperature
6.
Biochem J ; 363(Pt 3): 609-17, 2002 May 01.
Article in English | MEDLINE | ID: mdl-11964162

ABSTRACT

Chicken avidin and bacterial streptavidin are proteins familiar from their use in various (strept)avidin-biotin technological applications. Avidin binds the vitamin biotin with the highest affinity known for non-covalent interactions found in nature. The gene encoding avidin (AVD) has homologues in chicken, named avidin-related genes (AVRs). In the present study we used the AVR genes to produce recombinant AVR proteins (AVRs 1, 2, 3, 4/5, 6 and 7) in insect cell cultures and characterized their biotin-binding affinity and biochemical properties. Amino acid sequence analysis and molecular modelling were also used to predict and explain the properties of the AVRs. We found that the AVR proteins are very similar to avidin, both structurally and functionally. Despite the numerous amino acid substitutions in the subunit interface regions, the AVRs form extremely stable tetramers similar to those of avidin. Differences were found in some physico-chemical properties of the AVRs as compared with avidin, including lowered pI, increased glycosylation and, most notably, reversible biotin binding for two AVRs (AVR1 and AVR2). Molecular modelling showed how the replacement Lys(111)-->isoleucine in AVR2 alters the shape of the biotin-binding pocket and thus results in reversible binding. Both modelling and biochemical analyses showed that disulphide bonds can form and link monomers in AVR4/5, a property not found in avidin. These, together with the other properties of the AVRs described in the present paper, may offer advantages over avidin and streptavidin, making the AVRs applicable for improved avidin-biotin technological applications.


Subject(s)
Avidin/metabolism , Biotin/metabolism , Amino Acid Sequence , Animals , Avidin/genetics , Baculoviridae , Chickens , Glycosylation , Isoelectric Focusing , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Spodoptera , Streptavidin/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...