Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Endocrinol (Oxf) ; 87(3): 300-311, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28445628

ABSTRACT

OBJECTIVE: Acid-labile subunit deficiency (ACLSD), caused by inactivating mutations in both IGFALS gene alleles, is characterized by marked reduction in IGF-I and IGFBP-3 levels associated with mild growth retardation. The aim of this study was to expand the known phenotype and genetic characteristics of ACLSD by reporting data from four index cases and their families. DESIGN: Auxological data, biochemical and genetic studies were performed in four children diagnosed with ACLSD and all available relatives. METHODS: Serum levels of IGF-I, IGFBP-3, acid-labile subunit (ALS), and in vitro ternary complex formation (ivTCF) were determined. After sequencing the IGFALS gene, pathogenicity of novel identified variants was evaluated by in vitro expression in transfected Chinese hamster ovarian (CHO) cells. ALS protein was detected in patients' sera and CHO cells conditioned media and lysates by Western immunoblot (WIB). RESULTS: Four index cases and four relatives were diagnosed with ACLSD. The following variants were found: p.Glu35Glyfs*17, p.Glu35Lysfs*87, p.Leu213Phe, p.Asn276Ser, p.Leu409Phe, p.Ala475Val and p.Ser490Trp. ACLSD patients presented low IGF-I and low or undetectable levels of IGFBP-3 and ALS. Seven out of 8 patients did not form ivTCF. CONCLUSIONS: This study confirms previous findings in ACLSD, such as the low IGF-I and a more severe reduction in IGFBP-3 levels, and a gene dosage effect observed in heterozygous carriers (HC). In addition, father-to-son transmission (father compound heterozygous and mother HC), preservation of male fertility, and marginal ALS expression with potential involvement in preserved responsiveness to rhGH treatment, are all novel aspects, not previously reported in this condition.


Subject(s)
Glycoproteins/deficiency , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor I/analysis , Adolescent , Adult , Aged , Animals , Carrier Proteins/genetics , Child , Child, Preschool , Cricetulus , Family , Female , Fertility , Genetic Variation , Glycoproteins/genetics , Growth Disorders/genetics , Heterozygote , Humans , Infant , Insulin-Like Growth Factor Binding Protein 3/deficiency , Insulin-Like Growth Factor I/deficiency , Latin America , Male , Middle Aged , Mutation , Transfection , Young Adult
2.
J Bioenerg Biomembr ; 48(5): 469-482, 2016 10.
Article in English | MEDLINE | ID: mdl-27796771

ABSTRACT

Our objective was to know how insulin is processing in mitochondria; if IDE is the only participant in mitochondrial insulin degradation and the role of insulin degradation on IDE accumulation in mitoplasts. Mitochondria and its fractions were isolated as described by Greenwalt. IDE was purified and detected in immunoblot with specific antibodies. High insulin degradation was obtained through addition to rat's diet of 25 g/rat of apple and 10 g/rat of hard-boiled eggs, 3 days a week. Mitochondrial insulin degradation was assayed with 5 % TCA, insulin antibody or Sephadex G50 chromatography. Degradation was also assayed 60 min at 37 °C in mitochondrial fractions (IMS and Mx) with diet or not and without IDE. Degradation in fractions precipitated with ammonium sulfates (60-80 %) were studied after mitochondrial insulin incubation (1 ng. insulin during 15 min, at 30 °C) or with addition of 2.5 mM ATP. Supplementary diet increased insulin degradation. High insulin did not increase mitoplasts accumulation and did not decrease mitochondrial degradation. High insulin and inhibition of degradation evidence insulin competition for a putative transport system. Mitochondrial incubation with insulin increased IDE in matrix as observed in immunoblot. ATP decreased degradation in Mx and increased it in IMS. Chromatography of IMS demonstrated an ATP-dependent protease that degraded insulin, similar to described by Sitte et al. Mitochondria participate in insulin degradation and the diet increased it. High insulin did not accomplish mitochondrial decrease of degradation or its accumulation in mitoplasts. Mitochondrial incubation with insulin increased IDE in matrix. ATP suggested being a regulator of mitochondrial insulin degradation.


Subject(s)
Insulin/metabolism , Insulysin/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/pharmacology , Animals , Diet Therapy , Insulin/pharmacology , Mitophagy/drug effects , Rats
3.
Mol Cell Endocrinol ; 429: 19-28, 2016 07 05.
Article in English | MEDLINE | ID: mdl-27018247

ABSTRACT

Acid-labile subunit (ALS) is essential for stabilization of IGF-I and IGFBP-3 in ternary complexes within the vascular system. ALS deficient (ALS-D) patients and a subset of children with idiopathic short stature (ISS), presenting IGFALS gene variants, show variable degree of growth retardation associated to IGF-I and IGFBP-3 deficiencies. The aim of this study was to evaluate the potential pathogenicity of eleven IGFALS variants identified in ALS-D and ISS children using in silico and in vitro approaches. We were able to classify seven of these variants as pathogenic since they present impaired synthesis (p.Glu35Lysfs*87, p.Glu35Glyfs*17, p.Asn276Ser, p.Leu409Phe, p.Ser490Trp and p.Cys540Arg), or partial impairment of synthesis and lack of secretion (p.Leu213Phe). We also observed significant reduction of secreted protein for variants p.Ala330Asp, Ala475Val and p.Arg548Trp, while still retaining their ability to form ternary complexes. These findings provide an approach to test the pathogenicity of IGFALS gene variants.


Subject(s)
Carrier Proteins/genetics , Computational Biology/methods , Computer Simulation , Glycoproteins/genetics , Polymorphism, Single Nucleotide/genetics , Amino Acid Sequence , Animals , CHO Cells , Carrier Proteins/chemistry , Child , Cricetinae , Cricetulus , Female , Glycoproteins/chemistry , Humans , Male , Models, Molecular , Mutant Proteins/metabolism , Sequence Alignment , Software , Transfection
4.
Clin Exp Pharmacol Physiol ; 40(3): 205-11, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23278446

ABSTRACT

Normal rats fed a sucrose-rich diet (SRD) develop dyslipidaemia and insulin resistance. The present study examined whether administration of the mitochondrial nutrients nicotinamide and acetyl-L-carnitine reversed or improved these metabolic abnormalities. Male Wistar rats were fed an SRD for 90 days. Half the rats then received daily injections of nicotinamide (25 mg/kg, i.p.) and acetyl-L-carnitine (50 mg/kg, i.p.) for a further 90 days. The remaining rats in the SRD-fed group and those in a normal chow-fed control group were injected with an equal volume of saline solution for the same period. The following parameters were determined in all groups: (i) liver activity of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) and carnitine-palmitoyl transferase-1 (CPT-1); (ii) hepatic and skeletal muscle triacylglycerol content, plasma glucose, insulin, free fatty acid (FFA) and triacylglycerol levels and pancreatic insulin content; and (iii) glucose tolerance. Administration of nicotinamide and acetyl-L-carnitine to the SRD-fed rats reduced dyslipidaemia, liver steatosis, muscle triacylglycerol content and hepatic FAS and ACC activities and increased CPT-1 activity. In addition nicotinamide and acetyl-L-carnitine improved the glucose disappearance rate (K(g)), normalized plasma glucose levels and moderately increased insulinaemia without altering pancreatic insulin content. Finally, nicotinamide and acetyl-l-carnitine administration reduced bodyweight gain and visceral adiposity. The results of the present study suggest that altering key hepatic lipogenic and fatty acid oxidative enzymatic activity could improve dyslipidaemia, liver steatosis and visceral adiposity. Indeed, administration of nicotinamide and acetyl-l-carnitine improved glucose intolerance and normalized plasma glucose levels.


Subject(s)
Acetylcarnitine/therapeutic use , Dyslipidemias/drug therapy , Glucose/metabolism , Lipogenesis/drug effects , Liver/enzymology , Niacinamide/therapeutic use , Oxidative Stress/drug effects , Acetyl-CoA Carboxylase/metabolism , Acetylcarnitine/administration & dosage , Animals , Body Weight/drug effects , Carnitine O-Palmitoyltransferase/metabolism , Disease Models, Animal , Drug Combinations , Dyslipidemias/enzymology , Dyslipidemias/metabolism , Energy Intake/drug effects , Fatty Acid Synthases/metabolism , Fatty Acids, Nonesterified/blood , Glucose Tolerance Test , Insulin/metabolism , Insulin Resistance , Liver/drug effects , Male , Niacinamide/administration & dosage , Pancreas/drug effects , Pancreas/metabolism , Rats , Rats, Wistar , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...