Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(3)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38539905

ABSTRACT

Variations between fruit cultivars can significantly impact their biochemical composition. The present research examined the variability in the qualitative and quantitative content of phenolic compounds in berry extracts of Actinidia kolomikta and Actinidia arguta cultivars. Additionally, antioxidant activities of berry extracts were evaluated. The total phenolic, flavonoid, proanthocyanidin contents and hydroxycinnamic acid derivatives were determined using the appropriate methodologies. The average amount of phenolic compounds in A. kolomikta berries (177.80 mg/g) was three times higher than that of A. arguta (54.45 mg/g). Our findings revealed that berries of A. kolomikta and A. arguta accumulated, on average, 1.58 RE/g DW (rutin equivalent/g dry weight) and 0.615 mg RE/g DW of total flavonoids, 1439.31 mg EE/g DW (epicatechin equivalent/g dry weight) and 439.97 mg EE/g DW of proanthocyanidins, and 23.51 mg CAE/g DW (chlorogenic acid equivalent/g dry weight) and 5.65 mg CAE/g DW of hydroxycinnamic acid derivatives, respectively. The cultivars of both species were characterized by higher antioxidant activity of total phenolic compounds determined using CUPRAC and FRAP methods compared to the ABTS•+ method. The variability in phenolic compounds' qualitative and quantitative content in tested berry extracts was evaluated by applying ultra-high performance liquid chromatography (UHPLC) coupled to mass spectrometry in tandem with electrospray ionization. Significant intraspecific differences in the amounts of total phenolic compounds, total flavonoid compounds, proanthocyanidins, and hydroxycinnamic acid derivatives were determined among cultivars. Four phenolic acids, eight flavonols, two flavones, and five flavon-3-ols were identified in the berry extracts.

2.
J Agric Food Chem ; 72(14): 7618-7628, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38538519

ABSTRACT

Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.


Subject(s)
Beer , Lactobacillales , Alcoholic Beverages , Bacteria , Beer/analysis , Fermentation , Saccharomyces cerevisiae/metabolism , Wine/analysis
3.
MethodsX ; 12: 102643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38510935

ABSTRACT

Mousy off-flavor describes N-heterocycles compounds related to spoilage in the brewing industry. It has also been identified in sour beers through sensory analysis. Therefore, preventing spoilage N-heterocycles development is essential to preserve end-products and obviate economic losses. To this day, no methods or protocols have been reported to identifying mousy off-flavor compounds in a beer matrix. The main objective of this work was to develop a standardized quantification method for 2-acetyl-3,4,5,6-tetrahydropyridine (ATHP) in beer matrix, by Liquid Chromatography Mass Spectrometry with Electrospray Ionization (LC-MS-ESI). Extraction of ATHP in the samples was performed using QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique. Over a dozen different potentially mousy cask-aged sour beers including other spontaneously fermented beverages were provided, based on sensory analysis, to determine the variation in ATHP levels. Results indicated ATHP was found in all the samples, ranging from 1.64 ± 0.06 to 57.96 ± 2.15 µg L-1. Herein, we described our detection method of mousy-off flavor compounds which enables future research to mitigate the occurrence of such defects in fermented beverages matrix.•ATHP content in samples varied from 1.64 ± 0.06 to 57.96 ± 2.15 µg L-1.•The recovery range of ATHP using LC-MS-ESI varied from 71% to 97%.•Basified QuEChERS salting-out procedure is applicable for ATHP extraction from beer and other fermented beverages matrices.

4.
Microorganisms ; 11(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37764024

ABSTRACT

Hippophae rhamnoides L. leaves possess a remarkable amount of polyphenols that could serve as a natural remedy in various applications. In comparison, numerous techniques, such as conventional and high-pressure techniques, are available for extracting the bioactive fractions from sea buckthorn leaves (SBL). However, enzyme-assisted extraction (EAE) of SBL has not been comprehensively studied. The aim of this study was to optimize critical EAE parameters of SBL using the cellulolytic enzyme complex, Viscozyme L, to obtain a high-yield extract with a high concentration of bioactive compounds. In order to determine the optimal conditions for EAE, the study employed a central composite design and response surface methodology to analyze the effects of four independent factors (pH, temperature, extraction time, and enzyme concentration) on two different responses. Our findings indicated that under optimal conditions (3:15 h extraction, temperature 45 °C, pH 4.9, and 1% Viscozyme L v/w of leaves DW), EAE yielded 28.90 g/100 g DW of the water-soluble fraction. Furthermore, the EAE-optimized liquid extract was continuously fermented using an ancient fermentation starter, Tibetan kefir grains, which possess lactic acid bacteria (LAB) and have significant potential for use in biopreservation. Interestingly, the results indicated various potential prebiotic characteristics of LAB. Additionally, alterations in the cell wall morphology of the SBL residue after EAE were examined using scanning electron microscopy (SEM). This study significantly optimized EAE parameters for sea buckthorn leaves, providing a promising natural source of bioactive compounds for various applications, such as nutraceuticals, functional foods, and high-value products.

SELECTION OF CITATIONS
SEARCH DETAIL
...