Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(18): 11955-11963, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656985

ABSTRACT

The performance of all-solid-state lithium batteries (ASSLBs) is significantly impacted by lithium interfacial instability, which originates from the dynamic chemical, morphological, and mechanical changes during deep Li plating and stripping. In this study, we introduce a facile approach to generate a conductive and regenerative solid interface, enhancing both the Li interfacial stability and overall cell performance. The regenerative interface is primarily composed of nanosized lithium iodide (nano-LiI), which originates in situ from the adopted solid-state electrolyte (SSE). During cell operation, the nano-LiI interfacial layer can reversibly diffuse back and forth in synchronization with Li plating and stripping. The interface and dynamic process improve the adhesion and Li+ transport between the Li anode and SSE, facilitating uniform Li plating and stripping. As a result, the metallic Li anode operates stably for over 1000 h at high current densities and even under elevated temperatures. By using metallic Li as the anode directly, we demonstrate stable cycling of all-solid-state Li-sulfur batteries for over 250 cycles at an areal capacity of >2 mA h cm-2 and room temperature. This study offers insights into the design of regenerative and Li+-conductive interfaces to tackle solid interfacial challenges for high-performance ASSLBs.

2.
ACS Appl Mater Interfaces ; 14(28): 32035-32042, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35816730

ABSTRACT

The all-solid-state battery (ASSB) is a promising next-generation energy storage technology for both consumer electronics and electric vehicles because of its high energy density and improved safety. Sulfide solid-state electrolytes (SSEs) have merits of low density, high ionic conductivity, and favorable mechanical properties compared to oxide ceramic and polymer materials. However, mass production and processing of sulfide SSEs remain a grand challenge because of their poor moisture stability. Here, we report a reversible surface coating strategy for enhancing the moisture stability of sulfide SSEs using amphipathic organic molecules. An ultrathin layer of 1-bromopentane is coated on the sulfide SSE surface (e.g., Li7P2S8Br0.5I0.5) via Van der Waals force. 1-Bromopentane has more negative adsorption energy with SSEs than H2O based on first-principles calculations, thereby enhancing the moisture stability of SSEs because the hydrophobic long-chain alkyl tail of 1-bromopentane repels water molecules. Moreover, this amphipathic molecular layer has a negligible effect on ionic conductivity and can be removed reversibly by heating at low temperatures (e.g., 160 °C). This finding opens a new pathway for the surface engineering of moisture-sensitive SSEs and other energy materials, thereby speeding up their deployment in ASSBs.

3.
Front Microbiol ; 12: 705914, 2021.
Article in English | MEDLINE | ID: mdl-34512582

ABSTRACT

Planktothrix rubescens is a harmful planktonic cyanobacterium, forming concentrated metalimnetic populations in deep oligo- and mesotrophic lakes, even after successful restoration. In Lake Zurich (Switzerland), P. rubescens emerged as a keystone species with annual mass developments since the 1970s. Its success was partly attributed to effects of lake warming, such as changes in thermal stratification and seasonal deep mixing. However, recent observations based on a biweekly monitoring campaign (2009-2020) revealed two massive breakdowns and striking seasonal oscillations of the population. Here, we disentangle positive from negative consequences of secular lake warming and annual variations in weather conditions on P. rubescens dynamics: (i) despite the high survival rates of overwintering populations (up to 25%) during three consecutive winters (2014-2016) of incomplete deep convective mixing, cyanobacterial regrowth during the following stratified season was moderate and not overshooting a distinct standing stock threshold. Moreover, we recorded a negative trend for annual population maxima and total population size, pointing to a potential nutrient limitation after a series of incomplete winter mixing. Thus, the predication of steadily increasing blooms of P. rubescens could not be confirmed for the last decade. (ii) The seasonal reestablishment of P. rubescens was strongly coupled with a timely formation of a stable metalimnion structure, where the first positive net growth in the following productive summer season was observed. The trigger for the vertical positioning of filaments within the metalimnion was irradiance and not maximal water column stability. Repetitive disruptions of the vernal metalimnion owing to unstable weather conditions, as in spring 2019, went in parallel with a massive breakdown of the standing stock and marginal regrowth during thermal stratification. (iii) Driven by light intensity, P. rubescens was entrained into the turbulent epilimnion in autumn, followed by a second peak in population growth. Thus, the typical bimodal growth pattern was still intact during the last decade. Our long-term study highlights the finely tuned interplay between climate-induced changes and variability of thermal stratification dynamics and physiological traits of P. rubescens, determining its survival in a mesotrophic temperate lake.

4.
PeerJ ; 6: e4579, 2018.
Article in English | MEDLINE | ID: mdl-29629243

ABSTRACT

BACKGROUND: Minute to medium-sized (footprint length (FL) less than 30 cm) tridactyl dinosaur tracks are the most abundant in the Late Jurassic tracksites of Highway A16 (Reuchenette Formation, Kimmeridgian) in the Jura Mountains (NW Switzerland). During excavations, two morphotypes, one gracile and one robust, were identified in the field. Furthermore, two large-sized theropod ichnospecies (Megalosauripus transjuranicus and Jurabrontes curtedulensis) and an ornithopod-like morphotype (Morphotype II) have recently been described at these sites. METHODS: The quality of morphological preservation (preservation grade), the depth of the footprint, the shape variation, and the footprint proportions (FL/footprint width (FW) ratio and mesaxony) along the trackways have been analyzed using 3D models and false-color depth maps in order to determine the exact number of small to medium-sized morphotypes present in the tracksites. RESULTS: The study of footprints (n = 93) recovered during the excavations has made it possible to identify and characterize the two morphotypes distinguished in the field. The gracile morphotype is mainly characterized by a high FL/FW ratio, high mesaxony, low divarication angles and clear, sharp claw marks, and phalangeal pads (2-3-4). By contrast, the robust morphotype is characterized by a lower FL/FW ratio, weaker mesaxony, slightly higher divarication angles and clear, sharp claw marks (when preserved), whereas the phalangeal pads are not clearly preserved although they might be present. DISCUSSION: The analysis does not allow the two morphotypes to be associated within the same morphological continuum. Thus, they cannot be extramorphological variations of similar tracks produced by a single trackmaker. Comparison of the two morphotypes with the larger morphotypes described in the formation (M. transjuranicus, J. curtedulensis, and Morphotype II) and the spatio-temporal relationships of the trackways suggest that the smaller morphotypes cannot reliably be considered as small individuals of any of the larger morphotypes. The morphometric data of some specimens of the robust morphotype (even lower values for the length/width ratio and mesaxony) suggest that more than one ichnotaxon might be represented within the robust morphotype. The features of the gracile morphotype (cf. Kalohipus isp.) are typical of "grallatorid" ichnotaxa with low mesaxony whereas those of the robust morphotype (cf. Therangospodus isp. and Therangospodus? isp.) are reminiscent of Therangospodus pandemicus. This work sheds new light on combining an analysis of variations in footprint morphology through 3D models and false-color depth maps, with the study of possible ontogenetic variations and the identification of small-sized tridactyl ichnotaxa for the description of new dinosaur tracks.

5.
PeerJ ; 6: e4247, 2018.
Article in English | MEDLINE | ID: mdl-29340246

ABSTRACT

Vertebrate tracks are subject to a wide distribution of morphological types. A single trackmaker may be associated with a range of tracks reflecting individual pedal anatomy and behavioural kinematics mediated through substrate properties which may vary both in space and time. Accordingly, the same trackmaker can leave substantially different morphotypes something which must be considered in creating ichnotaxa. In modern practice this is often captured by the collection of a series of 3D track models. We introduce two concepts to help integrate these 3D models into ichnological analysis procedures. The mediotype is based on the idea of using statistically-generated three-dimensional track models (median or mean) of the type specimens to create a composite track to support formal recognition of a ichno type. A representative track (mean and/or median) is created from a set of individual reference tracks or from multiple examples from one or more trackways. In contrast, stat-tracks refer to other digitally generated tracks which may explore variance. For example, they are useful in: understanding the preservation variability of a given track sample; identifying characteristics or unusual track features; or simply as a quantitative comparison tool. Both concepts assist in making ichnotaxonomical interpretations and we argue that they should become part of the standard procedure when instituting new ichnotaxa. As three-dimensional models start to become a standard in publications on vertebrate ichnology, the mediotype and stat-track concepts have the potential to help guiding a revolution in the study of vertebrate ichnology and ichnotaxonomy.

6.
PLoS One ; 12(7): e0180289, 2017.
Article in English | MEDLINE | ID: mdl-28715504

ABSTRACT

A new ichnospecies of a large theropod dinosaur, Megalosauripus transjuranicus, is described from the Reuchenette Formation (Early-Late Kimmeridgian, Late Jurassic) of NW Switzerland. It is based on very well-preserved and morphologically-distinct tracks (impressions) and several trackways, including different preservational types from different tracksites and horizons. All trackways were excavated along federal Highway A16 near Courtedoux (Canton Jura) and systematically documented in the field including orthophotos and laserscans. The best-preserved tracks were recovered and additional tracks were casted. Megalosauripus transjuranicus is characterized by tridactyl tracks with clear claw and digital pad impressions, and notably an exceptionally large and round first phalangeal pad on the fourth digit (PIV1) that is connected to digit IV and forms the round heel area. Due to this combination of features, M. transjuranicus clearly is of theropod (and not ornithopod) origin. M. transjuranicus is compared to other Megalosauripus tracks and similar ichnotaxa and other unassigned tracks from the Early Jurassic to Early Cretaceous. It is clearly different from other ichnogenera assigned to large theropods such as Eubrontes-Grallator from the Late Triassic and Early Jurassic or Megalosauripus-Megalosauropus-Bueckeburgichnus and Therangospodus tracks from the Late Jurassic and Early Cretaceous. A second tridactyl morphotype (called Morphotype II) is different from Megalosauripus transjuranicus in being subsymmetric, longer than wide (sometimes almost as wide as long), with blunt toe impressions and no evidence for discrete phalangeal pad and claw marks. Some Morphotype II tracks are found in trackways that are assigned to M. transjuranicus, to M.? transjuranicus or M. cf. transjuranicus indicating that some Morphotype II tracks are intra-trackway preservational variants of a morphological continuum of Megalosauripus transjuranicus. On the other hand, several up to 40 steps long trackways very consistently present Morphotype II features (notably blunt digits) and do not exhibit any of the features that are typical for Megalosauripus (notably phalangeal pads). Therefore, it is not very likely that these tracks are preservational variants of Megalosauripus transjuranicus or Megalosauripus isp. These trackways are interpreted to have been left by an ornithopod dinosaur. The high frequency of large theropod tracks in tidal-flat deposits of the Jura carbonate platform, associated on single ichnoassemblages with minute to medium-sized tridactyl and tiny to large sauropod tracks has important implications for the dinosaur community and for paleoenvironmental and paleogeographical reconstructions. As with most other known occurrences of Megalosauripus tracks, M. transjuranicus is found in coastal settings, which may reflect the preference of their theropod trackmakers for expanded carbonate flats where food was abundant.


Subject(s)
Dinosaurs/classification , Paleontology , Animals , Fossils , Switzerland
7.
PLoS One ; 10(10): e0141059, 2015.
Article in English | MEDLINE | ID: mdl-26492525

ABSTRACT

The historically-famous Lotus Fortress site, a deep 1.5-3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Cretaceous Jiaguan Formation, has been known since the 13th Century as an impregnable defensive position. The site is also extraordinary for having multiple tetrapod track-bearing levels, of which the lower two form the floor of part of the notch, and yield very well preserved asseamblages of ornithopod, bird (avian theropod) and pterosaur tracks. Trackway counts indicate that ornithopods dominate (69%) accounting for at least 165 trackmakers, followed by bird (18%), sauropod (10%), and pterosaur (3%). Previous studies designated Lotus Fortress as the type locality of Caririchnium lotus and Wupus agilis both of which are recognized here as valid ichnotaxa. On the basis of multiple parallel trackways both are interpreted as representing the trackways of gregarious species. C. lotus is redescribed here in detail and interpreted to indicate two age cohorts representing subadults that were sometimes bipedal and larger quadrupedal adults. Two other previously described dinosaurian ichnospecies, are here reinterpreted as underprints and considered nomina dubia. Like a growing number of significant tetrapod tracksites in China the Lotus Fortress site reveals new information about the composition of tetrapod faunas from formations in which the skeletal record is sparse. In particular, the site shows the relatively high abundance of Caririchium in a region where saurischian ichnofaunas are often dominant. It is also the only site known to have yielded Wupus agilis. In combination with information from other tracksites from the Jiaguan formation and other Cretaceous formations in the region, the track record is proving increasingly impotant as a major source of information on the vertebrate faunas of the region. The Lotus Fortress site has been developed as a spectacular, geologically-, paleontologically- and a culturally-significant destination within Qijiang National Geological Park.


Subject(s)
Conservation of Natural Resources , Dinosaurs/classification , Dinosaurs/physiology , Extremities/physiology , Locomotion/physiology , Animals , China , Dinosaurs/anatomy & histology , Extremities/anatomy & histology , Geological Phenomena , Models, Biological , Paleontology
SELECTION OF CITATIONS
SEARCH DETAIL
...