Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Chem Commun (Camb) ; 60(56): 7204-7207, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38910507

ABSTRACT

Reduction of [Mg(NON)]2 ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) affords Mg(I) species containing NON- and NNO-ligands ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(I) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg-Mg(NNO)] with a structurally characterised Mg-Mg bond that was examined using density functional theory.

2.
Echo Res Pract ; 11(1): 14, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825684

ABSTRACT

BACKGROUND: Echocardiography is widely used to evaluate left ventricular (LV) diastolic function in patients suspected of heart failure. For patients in sinus rhythm, a combination of several echocardiographic parameters can differentiate between normal and elevated LV filling pressure with good accuracy. However, there is no established echocardiographic approach for the evaluation of LV filling pressure in patients with atrial fibrillation. The objective of the present study was to determine if a combination of several echocardiographic and clinical parameters may be used to evaluate LV filling pressure in patients with atrial fibrillation. RESULTS: In a multicentre study of 148 atrial fibrillation patients, several echocardiographic parameters were tested against invasively measured LV filling pressure as the reference method. No single parameter had sufficiently strong association with LV filling pressure to be recommended for clinical use. Based on univariate regression analysis in the present study, and evidence from existing literature, we developed a two-step algorithm for differentiation between normal and elevated LV filling pressure, defining values ≥ 15 mmHg as elevated. The parameters in the first step included the ratio between mitral early flow velocity and septal mitral annular velocity (septal E/e'), mitral E velocity, deceleration time of E, and peak tricuspid regurgitation velocity. Patients who could not be classified in the first step were tested in a second step by applying supplementary parameters, which included left atrial reservoir strain, pulmonary venous systolic/diastolic velocity ratio, and body mass index. This two-step algorithm classified patients as having either normal or elevated LV filling pressure with 75% accuracy and with 85% feasibility. Accuracy in EF ≥ 50% and EF < 50% was similar (75% and 76%). CONCLUSIONS: In patients with atrial fibrillation, no single echocardiographic parameter was sufficiently reliable to be used clinically to identify elevated LV filling pressure. An algorithm that combined several echocardiographic parameters and body mass index, however, was able to classify patients as having normal or elevated LV filling pressure with moderate accuracy and high feasibility.

3.
Circ Arrhythm Electrophysiol ; 17(7): e012684, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38939983

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) and ventricular fibrillation (VF) episodes exhibit varying durations, with some spontaneously ending quickly while others persist. A quantitative framework to explain episode durations remains elusive. We hypothesized that observable self-terminating AF and VF episode lengths, whereby durations are known, would conform with a power law based on the ratio of system size and correlation length ([Formula: see text]. METHODS: Using data from computer simulations (2-dimensional sheet and 3-dimensional left-atrial), human ischemic VF recordings (256-electrode sock, n=12 patients), and human AF recordings (64-electrode basket-catheter, n=9 patients; 16-electrode high definition-grid catheter, n=42 patients), conformance with a power law was assessed using the Akaike information criterion, Bayesian information criterion, coefficient of determination (R2, significance=P<0.05) and maximum likelihood estimation. We analyzed fibrillatory episode durations and [Formula: see text], computed by taking the ratio between system size ([Formula: see text], chamber/simulation size) and correlation length (xi, estimated from pairwise correlation coefficients over electrode/node distance). RESULTS: In all computer models, the relationship between episode durations and [Formula: see text] was conformant with a power law (Aliev-Panfilov R2: 0.90, P<0.001; Courtemanche R2: 0.91, P<0.001; Luo-Rudy R2: 0.61, P<0.001). Observable clinical AF/VF durations were also conformant with a power law relationship (VF R2: 0.86, P<0.001; AF basket R2: 0.91, P<0.001; AF grid R2: 0.92, P<0.001). [Formula: see text] also differentiated between self-terminating and sustained episodes of AF and VF (P<0.001; all systems), as well as paroxysmal versus persistent AF (P<0.001). In comparison, other electrogram metrics showed no statistically significant differences (dominant frequency, Shannon Entropy, mean voltage, peak-peak voltage; P>0.05). CONCLUSIONS: Observable fibrillation episode durations are conformant with a power law based on system size and correlation length.


Subject(s)
Atrial Fibrillation , Ventricular Fibrillation , Humans , Ventricular Fibrillation/physiopathology , Ventricular Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Time Factors , Male , Female , Action Potentials , Computer Simulation , Heart Rate , Models, Cardiovascular , Middle Aged , Heart Conduction System/physiopathology , Electrophysiologic Techniques, Cardiac , Aged , Bayes Theorem
4.
Chem Commun (Camb) ; 60(7): 881-884, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38165276

ABSTRACT

The aluminacyclopropane K[Al(NON)(η-C2H4)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) reacts with CO2 and iPrNCNiPr to afford ring-expanded products of C-C bond formation. The latter system undergoes a 1,3-silyl retro-Brook rearrangement of the NON-group, to afford the [NNO]2- ligand ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The mechanism of transformation was examined by density functional theory (DFT).

5.
Chemistry ; 30(1): e202302999, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37786922

ABSTRACT

A simple sequential addition protocol for the reductive coupling of ketones and aldehydes by a potassium aluminyl grants access to unsymmetrical pinacolate derivatives. Isolation of an aluminium ketyl complex presents evidence for the accessibility of radical species. Product release from the aluminium centre was achieved using an iodosilane, forming the disilylated 1,2-diol and a neutral aluminium iodide, thereby demonstrating the steps required to generate a closed synthetic cycle for pinacol (cross) coupling at an aluminyl anion.

6.
Clin Biomech (Bristol, Avon) ; 111: 106157, 2024 01.
Article in English | MEDLINE | ID: mdl-38103526

ABSTRACT

BACKGROUND: Predicting breast tissue motion using biomechanical models can provide navigational guidance during breast cancer treatment procedures. These models typically do not account for changes in posture between procedures. Difference in shoulder position can alter the shape of the pectoral muscles and breast. A greater understanding of the differences in the shoulder orientation between prone and supine could improve the accuracy of breast biomechanical models. METHODS: 19 landmarks were placed on the sternum, clavicle, scapula, and humerus of the shoulder girdle in prone and supine breast MRIs (N = 10). These landmarks were used in an optimization framework to fit subject-specific skeletal models and compare joint angles of the shoulder girdle between these positions. FINDINGS: The mean Euclidean distance between joint locations from the fitted skeletal model and the manually identified joint locations was 15.7 mm ± 2.7 mm. Significant differences were observed between prone and supine. Compared to supine position, the shoulder girdle in the prone position had the lateral end of the clavicle in more anterior translation (i.e., scapula more protracted) (P < 0.05), the scapula in more protraction (P < 0.01), the scapula in more upward rotation (associated with humerus elevation) (P < 0.05); and the humerus more elevated (P < 0.05) for both the left and right sides. INTERPRETATION: Shoulder girdle orientation was found to be different between prone and supine. These differences would affect the shape of multiple pectoral muscles, which would affect breast shape and the accuracy of biomechanical models.


Subject(s)
Shoulder Joint , Shoulder , Humans , Shoulder/diagnostic imaging , Shoulder/physiology , Supine Position , Shoulder Joint/diagnostic imaging , Shoulder Joint/physiology , Range of Motion, Articular/physiology , Biomechanical Phenomena , Scapula/diagnostic imaging , Scapula/physiology , Rotation , Magnetic Resonance Imaging
7.
Article in English | MEDLINE | ID: mdl-38083471

ABSTRACT

Clinical translation of personalised computational physiology workflows and digital twins can revolutionise healthcare by providing a better understanding of an individual's physiological processes and any changes that could lead to serious health consequences. However, the lack of common infrastructure for developing these workflows and digital twins has hampered the realisation of this vision. The Auckland Bioengineering Institute's 12 LABOURS project aims to address these challenges by developing a Digital Twin Platform to enable researchers to develop and personalise computational physiology models to an individual's health data in clinical workflows. This will allow clinical trials to be more efficiently conducted to demonstrate the efficacy of these personalised clinical workflows. We present a demonstration of the platform's capabilities using publicly available data and an existing automated computational physiology workflow developed to assist clinicians with diagnosing and treating breast cancer. We also demonstrate how the platform facilitates the discovery and exploration of data and the presentation of workflow results as part of clinical reports through a web portal. Future developments will involve integrating the platform with health systems and remote-monitoring devices such as wearables and implantables to support home-based healthcare. Integrating outputs from multiple workflows that are applied to the same individual's health data will also enable the generation of their personalised digital twin.Clinical Relevance- The proposed 12 LABOURS Digital Twin Platform will enable researchers to 1) more efficiently conduct clinical trials to assess the efficacy of their computational physiology workflows and support the clinical translation of their research; 2) reuse primary and derived data from these workflows to generate novel workflows; and 3) generate personalised digital twins by integrating the outputs of different computational physiology workflows.


Subject(s)
Computational Biology , Software , Computational Biology/methods , Workflow
8.
Chemistry ; 29(71): e202302903, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37786384

ABSTRACT

The reaction of 9-diazo-9H-fluorene (fluN2 ) with the potassium aluminyl K[Al(NON)] ([NON]2- =[O(SiMe2 NDipp)2 ]2- , Dipp=2,6-iPr2 C6 H3 ) affords K[Al(NON)(κN1 ,N3 -{(fluN2 )2 })] (1). Structural analysis shows a near planar 1,4-di(9H-fluoren-9-ylidene)tetraazadiide ligand that chelates to the aluminium. The thermally induced elimination of dinitrogen from 1 affords the neutral aluminium ketimide complex, Al(NON)(N=flu)(THF) (2) and the 1,2-di(9H-fluoren-9-yl)diazene dianion as the potassium salt, [K2 (THF)3 ][fluN=Nflu] (3). The reaction of 2 with N,N'-diisopropylcarbodiimide (iPrN=C=NiPr) affords the aluminium guanidinate complex, Al(NON){N(iPr)C(N=CMe2 )N(CHflu)} (4), showing a rare example of reactivity at a metal ketimide ligand. Density functional theory (DFT) calculations have been used to examine the bonding in the newly formed [(fluN2 )2 ]2- ligand in 1 and the ketimide bonding in 2. The mechanism leading to the formation of 4 has also been studied using this technique.

9.
Br J Radiol ; 96(1151): 20230126, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37656217

ABSTRACT

OBJECTIVE: As lung cancer screening is rolled-out, there is a need to develop an effective quality assurance (QA) framework around radiology reporting to ensure optimal implementation. Here, we report a structured QA process for low-dose CT (LDCT) scans performed in the Yorkshire Lung Screening Trial. METHODS: Negative LDCT scans were single read after using computer-aided detection software. The radiology QA process included reviewing 5% of negative scans selected at random, and all cases with a subsequent diagnosis of extrapulmonary cancer or interval lung cancer not detected on the baseline scan. Radiologists were not informed of the reason for review and original radiology reports were scored as either "satisfactory", "satisfactory with learning points", or "unsatisfactory". RESULTS: From 6650 participants undergoing LDCT screening, 208 negative scans were reviewed alongside 11 cases with subsequent extrapulmonary cancer and 10 cases with interval lung cancer. Overall, only three reports were ultimately judged "unsatisfactory", 1% of randomly selected negative scans (n = 2/208) and one interval lung cancer scan (n = 1/10). Four out of a total of five cases judged "satisfactory with learning points" were related to oesophageal abnormalities where the participant was subsequently diagnosed with oesophageal cancer. CONCLUSION: The described process attempts to minimise bias in retrospective review of screening scans, and may represent a framework for future QA of national screening programmes. ADVANCES IN KNOWLEDGE: This study describes a structured QA process for a lung cancer screening programme, involving blinded second-read of LDCT screening scans to ensure fair, constructive audit of clinical performance.


Subject(s)
Lung Neoplasms , Radiology , Humans , Lung Neoplasms/diagnostic imaging , Early Detection of Cancer , Lung , Tomography, X-Ray Computed , Mass Screening
10.
BMJ Open Respir Res ; 10(1)2023 08.
Article in English | MEDLINE | ID: mdl-37612098

ABSTRACT

INTRODUCTION: Interstitial lung abnormalities (ILA) are relatively common incidental findings in participants undergoing low-dose CT screening for lung cancer. Some ILA are transient and inconsequential, but others represent interstitial lung disease (ILD). Lung cancer screening therefore offers the opportunity of earlier diagnosis and treatment of ILD for some screening participants. METHODS: The prevalence of ILA in participants in the baseline screening round of the Yorkshire Lung Screening Trial is reported, along with the proportion referred to a regional ILD service, eventual diagnoses, outcomes and treatments. RESULTS: Of 6650 participants undergoing screening, ILA were reported in 169 (2.5%) participants. Following review in a screening review meeting, 56 participants were referred to the ILD service for further evaluation (0.8% of all screening participants). 2 participants declined referral, 1 is currently awaiting review and the remaining 53 were confirmed as having ILD. Eventual diagnoses were idiopathic pulmonary fibrosis (n=14), respiratory bronchiolitis ILD (n=4), chronic hypersensitivity pneumonitis (n=2), connective tissue disease/rheumatoid arthritis-related ILD (n=4), asbestosis (n=1), idiopathic non-specific interstitial pneumonia (n=1), sarcoidosis (n=1) and pleuroparenchymal fibroelastosis (n=1). Twenty five patients had unclassifiable idiopathic interstitial pneumonia. Overall, 10 people received pharmacotherapy (7 antifibrotics and 3 prednisolone) representing 18% of those referred to the ILD service and 0.15% of those undergoing screening. 32 people remain under surveillance in the ILD service, some of whom may require treatment in future. DISCUSSION: Lung cancer screening detects clinically significant cases of ILD allowing early commencement of disease-modifying treatment in a proportion of participants. This is the largest screening cohort to report eventual diagnoses and treatments and provides an estimate of the level of clinical activity to be expected by ILD services as lung cancer screening is implemented. Further research is needed to clarify the optimal management of screen-detected ILD. TRIAL REGISTRATION NUMBER: ISRCTN42704678.


Subject(s)
Alveolitis, Extrinsic Allergic , Idiopathic Pulmonary Fibrosis , Lung Neoplasms , Humans , Early Detection of Cancer , Lung , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging
12.
Physiol Meas ; 44(9)2023 09 11.
Article in English | MEDLINE | ID: mdl-37478870

ABSTRACT

Objective. Early diagnosis of heart problems is essential for improving patient prognosis.Approach. We created a non-contact imaging system that calculates the vessel-induced deformation of the skin to estimate the carotid artery pressure displacement waveforms. We present a clinical study of the system in patients (n= 27) with no underlying condition, aortic stenosis (AS), or mitral regurgitation (MR).Main results. Displacement waveforms were compared to aortic catheter pressures in the same patients. The morphologies of the pressure and displacement waveforms were found to be similar, and pulse wave analysis metrics, such as our modified reflection indices (RI) and waveform duration proportions, showed no significant differences. Compared with the control group, AS patients displayed a greater proportion of time to peak (p= 0.026 andp= 0.047 for catheter and displacement, respectively), whereas augmentation index (AIx)was greater for the displacement waveform only (p= 0.030). The modified RI for MR (p= 0.047 andp= 0.004 for catheter and displacement, respectively) was lower than in the controls. AS and MR were also significantly different for the proportion of time to peak (p= 0.018 for the catheter measurements), RI (p= 0.045 andp= 0.002 for the catheter and displacement, respectively), and AIx (p= 0.005 for the displacement waveform).Significance. These findings demonstrate the ability of our system to provide insights into cardiac conditions and support further development as a diagnostic/telehealth-based screening tool.


Subject(s)
Aortic Valve Stenosis , Mitral Valve Insufficiency , Humans , Mitral Valve Insufficiency/diagnostic imaging , Carotid Arteries , Aortic Valve Stenosis/diagnostic imaging , Aorta , Blood Pressure
13.
J Hypertens ; 41(10): 1606-1614, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37466436

ABSTRACT

BACKGROUND: Left ventricular (LV) global longitudinal strain (GLS) has been proposed as an early imaging biomarker of cardiac mechanical dysfunction. OBJECTIVE: To assess the impact of angiotensin-converting enzyme (ACE) inhibitor treatment of hypertensive heart disease on LV GLS and mechanical function. METHODS: The spontaneously hypertensive rat (SHR) model of hypertensive heart disease ( n  = 38) was studied. A subset of SHRs received quinapril (TSHR, n  = 16) from 3 months (mo). Wistar Kyoto rats (WKY, n  = 13) were used as controls. Tagged cardiac MRI was performed using a 4.7 T Varian preclinical scanner. RESULTS: The SHRs had significantly lower LV ejection fraction (EF) than the WKYs at 3 mo (53.0 ±â€Š1.7% vs. 69.6 ±â€Š2.1%, P  < 0.05), 14 mo (57.0 ±â€Š2.5% vs. 74.4 ±â€Š2.9%, P  < 0.05) and 24 mo (50.1 ±â€Š2.4% vs. 67.0 ±â€Š2.0%, P  < 0.01). At 24 mo, ACE inhibitor treatment was associated with significantly greater LV EF in TSHRs compared to untreated SHRs (64.2 ±â€Š3.4% vs. 50.1 ±â€Š2.4%, P  < 0.01). Peak GLS magnitude was significantly lower in SHRs compared with WKYs at 14 months (7.5% ±â€Š0.4% vs. 9.9 ±â€Š0.8%, P  < 0.05). At 24 months, Peak GLS magnitude was significantly lower in SHRs compared with both WKYs (6.5 ±â€Š0.4% vs. 9.7 ±â€Š1.0%, P  < 0.01) and TSHRs (6.5 ±â€Š0.4% vs. 9.6 ±â€Š0.6%, P  < 0.05). CONCLUSIONS: ACE inhibitor treatment curtails the decline in global longitudinal strain in hypertensive rats, with the treatment group exhibiting significantly greater LV EF and GLS magnitude at 24 mo compared with untreated SHRs.


Subject(s)
Heart Diseases , Hypertension , Rats , Animals , Quinapril , Rats, Inbred WKY , Global Longitudinal Strain , Hypertension/drug therapy , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Rats, Inbred SHR , Blood Pressure
14.
Chemistry ; 29(56): e202301849, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37429823

ABSTRACT

Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.

15.
Chem Sci ; 14(23): 6278-6288, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37325153

ABSTRACT

We report the reaction of the potassium aluminyl, K[Al(NON)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) with a series of isocyanide substrates (R-NC). In the case of tBu-NC, degradation of the isocyanide was observed generating an isomeric mixture of the corresponding aluminium cyanido-κC and -κN compounds, K[Al(NON)(H)(CN)]/K[Al(NON)(H)(NC)]. The reaction with 2,6-dimethylphenyl isocyanide (Dmp-NC), gave a C3-homologation product, which in addition to C-C bond formation showed dearomatisation of one of the aromatic substituents. In contrast, using adamantyl isocyanide Ad-NC allowed both the C2- and C3-homologation products to be isolated, allowing a degree of control to be exercised over the chain growth process. These data also show that the reaction proceeds through a stepwise addition, supported in this study by the synthesis of the mixed [(Ad-NC)2(Dmp-NC)]2- product. Computational analysis of the bonding within the homologised products confirm a high degree of multiple bond character in the exocyclic ketenimine units of the C2- and C3-products. In addition, the mechanism of chain growth was investigated, identifying different possible pathways leading to the observed products, and highlighting the importance of the potassium cation in formation of the initial C2-chain.

16.
Chaos ; 33(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37307158

ABSTRACT

Atrial and ventricular fibrillation (AF/VF) are characterized by the repetitive regeneration of topological defects known as phase singularities (PSs). The effect of PS interactions has not been previously studied in human AF and VF. We hypothesized that PS population size would influence the rate of PS formation and destruction in human AF and VF, due to increased inter-defect interaction. PS population statistics were studied in computational simulations (Aliev-Panfilov), human AF and human VF. The influence of inter-PS interactions was evaluated by comparison between directly modeled discrete-time Markov chain (DTMC) transition matrices of the PS population changes, and M/M/∞ birth-death transition matrices of PS dynamics, which assumes that PS formations and destructions are effectively statistically independent events. Across all systems examined, PS population changes differed from those expected with M/M/∞. In human AF and VF, the formation rates decreased slightly with PS population when modeled with the DTMC, compared with the static formation rate expected through M/M/∞, suggesting new formations were being inhibited. In human AF and VF, the destruction rates increased with PS population for both models, with the DTMC rate increase exceeding the M/M/∞ estimates, indicating that PS were being destroyed faster as the PS population grew. In human AF and VF, the change in PS formation and destruction rates as the population increased differed between the two models. This indicates that the presence of additional PS influenced the likelihood of new PS formation and destruction, consistent with the notion of self-inhibitory inter-PS interactions.


Subject(s)
Atrial Fibrillation , Ventricular Fibrillation , Humans , Heart Atria , Markov Chains , Probability
17.
Sci Rep ; 13(1): 8118, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208380

ABSTRACT

Cardiovascular imaging studies provide a multitude of structural and functional data to better understand disease mechanisms. While pooling data across studies enables more powerful and broader applications, performing quantitative comparisons across datasets with varying acquisition or analysis methods is problematic due to inherent measurement biases specific to each protocol. We show how dynamic time warping and partial least squares regression can be applied to effectively map between left ventricular geometries derived from different imaging modalities and analysis protocols to account for such differences. To demonstrate this method, paired real-time 3D echocardiography (3DE) and cardiac magnetic resonance (CMR) sequences from 138 subjects were used to construct a mapping function between the two modalities to correct for biases in left ventricular clinical cardiac indices, as well as regional shape. Leave-one-out cross-validation revealed a significant reduction in mean bias, narrower limits of agreement, and higher intraclass correlation coefficients for all functional indices between CMR and 3DE geometries after spatiotemporal mapping. Meanwhile, average root mean squared errors between surface coordinates of 3DE and CMR geometries across the cardiac cycle decreased from 7 ± 1 to 4 ± 1 mm for the total study population. Our generalised method for mapping between time-varying cardiac geometries obtained using different acquisition and analysis protocols enables the pooling of data between modalities and the potential for smaller studies to leverage large population databases for quantitative comparisons.


Subject(s)
Echocardiography, Three-Dimensional , Humans , Echocardiography, Three-Dimensional/methods , Magnetic Resonance Imaging , Bias , Heart Ventricles/diagnostic imaging , Reproducibility of Results , Ventricular Function, Left , Stroke Volume
18.
Front Physiol ; 14: 1104838, 2023.
Article in English | MEDLINE | ID: mdl-36969588

ABSTRACT

Our study methodology is motivated from three disparate needs: one, imaging studies have existed in silo and study organs but not across organ systems; two, there are gaps in our understanding of paediatric structure and function; three, lack of representative data in New Zealand. Our research aims to address these issues in part, through the combination of magnetic resonance imaging, advanced image processing algorithms and computational modelling. Our study demonstrated the need to take an organ-system approach and scan multiple organs on the same child. We have pilot tested an imaging protocol to be minimally disruptive to the children and demonstrated state-of-the-art image processing and personalized computational models using the imaging data. Our imaging protocol spans brain, lungs, heart, muscle, bones, abdominal and vascular systems. Our initial set of results demonstrated child-specific measurements on one dataset. This work is novel and interesting as we have run multiple computational physiology workflows to generate personalized computational models. Our proposed work is the first step towards achieving the integration of imaging and modelling improving our understanding of the human body in paediatric health and disease.

19.
Chem Commun (Camb) ; 59(15): 2134-2137, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36727241

ABSTRACT

Reduction of the heteroleptic Ln(III) precursors [Ln(Tp)2(OTf)] (Tp = hydrotris(1-pyrazolyl)borate; OTf = triflate) with either an aluminyl(I) anion or KC8 yielded the adduct-free homoleptic Ln(II) complexes dimeric 1-Eu [{Eu(Tp)(µ-κ1:η5-Tp)}2] and monomeric 1-Yb [Yb(Tp)2]. Complexes 1-Ln have good solubility and stability in both non-coordinating and coordinating solvents. Reaction of 1-Ln with 2 Ph3PO yielded 1-Ln(OPPh3)2. All complexes are intensely coloured and 1-Eu is photoluminescent. The electronic absorption data show the 4f-5d electronic transitions in Ln(II). Single-crystal X-ray diffraction data reveal first µ-κ1:η5-coordination mode of the unsubstituted Tp ligand to lanthanides in 1-Eu.

20.
Int J Cardiovasc Imaging ; 39(6): 1189-1202, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36820960

ABSTRACT

Changes in cardiovascular hemodynamics are closely related to the development of aortic regurgitation (AR), a type of valvular heart disease. Metrics derived from blood flows are used to indicate AR onset and evaluate its severity. These metrics can be non-invasively obtained using four-dimensional (4D) flow magnetic resonance imaging (MRI), where accuracy is primarily dependent on spatial resolution. However, insufficient resolution often results from limitations in 4D flow MRI and complex aortic regurgitation hemodynamics. To address this, computational fluid dynamics simulations were transformed into synthetic 4D flow MRI data and used to train a variety of neural networks. These networks generated super-resolution, full-field phase images with an upsample factor of 4. Results showed decreased velocity error, high structural similarity scores, and improved learning capabilities from previous work. Further validation was performed on two sets of in vivo 4D flow MRI data and demonstrated success in de-noising flow images. This approach presents an opportunity to comprehensively analyse AR hemodynamics in a non-invasive manner.


Subject(s)
Aortic Valve Insufficiency , Deep Learning , Humans , Aortic Valve Insufficiency/diagnostic imaging , Blood Flow Velocity/physiology , Hydrodynamics , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Hemodynamics , Imaging, Three-Dimensional/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...