Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 25(10): e202300789, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38363084

ABSTRACT

The influence of acetazolamide (ACT) on the kinetics and the mechanism of electroreduction of In(III) ions as a function of changes of the water activity was investigated using electrochemical methods (DC, SWV, CV and EIS, CV). The multi-step mechanism of the electroreduction process should take into account the dehydration step of indium ions and the presence of In-ACT (,,cap-pair" effect) active complexes, mediating electron transfer, located in the adsorption layer. Differences in the electrode mechanism in the presence of ACT were observed for higher chlorates(VII) concentrations (above 4 mol ⋅ dm-3 chlorates(VII)) reflected by a lack of step wise nature of the electrode process. The highest catalytic activity was observed in 4 mol ⋅ dm-3 chlorates(VII).

2.
Molecules ; 28(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37049705

ABSTRACT

The results of kinetic measurements revealed an accelerating effect of acetazolamide (ACT) on the multistep In(III) ions electroreduction in chlorates(VII) on a novel, cyclically renewable liquid silver amalgam film electrode (R-AgLAFE). The kinetic and thermodynamic parameters were determined by applying the DC polarography, square-wave (SWV) and cyclic voltammetry (CV), as well as electrochemical impedance spectroscopy (EIS). It was shown that ACT catalyzed the electrode reaction ("cap-pair" effect) by adsorbing on the surface of the R-AgLAFE electrode. The catalytic activity of ACT was explained as related to its ability to form active In(III)- acetazolamide complexes on the electrode surface, facilitating the electron transfer process. The active complexes constitute a substrate in the electroreduction process and their different structures and properties are responsible for differences in the catalytic activity. The determined values of the activation energy ΔH≠ point to the catalytic activity of ACT in the In(III) ions electroreduction process in chlorates(VII). Analysis of the standard entropy values ΔS0 confirm changes in the dynamics of the electrode process.

3.
Molecules ; 26(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209723

ABSTRACT

The catalytic influence of methionine (Mt) on the electroreduction of Bi(III) ions on the novel, cyclically renewable liquid silver amalgam film electrode (R-AgLAFE) in a non-complexing electrolyte solution was examined. The presence of methionine leads to a multistep reaction mechanism, where the transfer of the first electron is the rate limiting step, which is the subject of catalytic augmentation. The catalytic activity of methionine is a consequence of its ability to remove water molecules from the bismuth ion coordination sphere, as well as to form active complexes on the electrode surface, facilitating the electron transfer process.

SELECTION OF CITATIONS
SEARCH DETAIL
...