Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(28): 6432-6439, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37428962

ABSTRACT

Herein, we present an efficient approach for screening the intrinsic photostability of organic absorber materials used in photovoltaic applications. Using a series of structurally related conjugated polymers and a set of complementary techniques, we established important "material structure-photostability" relationships. In particular, we have revealed that the introduction of alkoxy, thioalkyl, and fluorine substituents adversely affects the material photostability. Further systematic screening of different types of materials using the developed techniques should yield a set of guidelines for designing more stable absorber materials for organic solar cells.

2.
ChemSusChem ; 15(3): e202101336, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-34519424

ABSTRACT

Although organic solar cells have started to demonstrate competitive power conversion efficiencies of >18 %, their operational lifetimes remain insufficient for wide practical use and the factors influencing the photostability of absorber materials and completed devices are still not completely understood. A systematic study of two series of structurally similar [XTBT]n and [XTTBTBTT]n polymers (16 structures in total) reveals the building blocks that enable the highest material stability towards photooxidation: fluorene, silafluorene, carbazole, diketopyrrolopyrrole, and isoindigo. Furthermore, a direct correlation is evident between the electronic properties of the conjugated polymers and their reactivity towards oxygen. The structures with the lowest highest occupied molecular orbital (HOMO) energies show the highest electrochemical oxidation potentials and appear to be the most resistant towards chemical oxidation. These relationships set important guidelines for the further rational design of new absorber materials for efficient and stable organic photovoltaics.

3.
ACS Appl Mater Interfaces ; 11(24): 21741-21748, 2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31091872

ABSTRACT

We explored the radiation stability of carbazole-based electron-donor conjugated polymers, acceptor fullerene derivative [60]PCBM, and their blends as active layer components of organic solar cells. An exposure to Î³ rays induced evident degradation effects in bulk samples of the pristine fullerene acceptor ([60]PCBM) and two investigated electron-donor conjugated polymers: PCDTBT and PCDTTBTBTT. The most severe radiation damage occurred in [60]PCBM as can be concluded from the significant losses in open circuit voltage, fill factor, and efficiency of photovoltaic (PV) devices comprising the exposed fullerene acceptor. Conjugated polymers PCDTBT and PCDTTBTBTT showed substantially different radiation stabilities: the samples of PCDTTBTBTT exposed to 200 Gy lost ∼25% of their nominal photovoltaic efficiency due to a substantial decay of all device parameters, while PCDTBT alone showed just a minor aging under the same conditions. The fullerene-polymer composites were much more resistant with respect to the radiation damage than the bulk samples of pristine materials. In particular, the PCDTBT/[60]PCBM composite films demonstrated an outstanding radiation stability while maintaining more than 80% of the initial photovoltaic efficiency after exposure to γ rays with a maximum absorbed dose of 6500 Gy. Considering an average annual radiation dose of 160 Gy according to the NASA estimations for satellites at geocentric Earth orbits, organic solar cells based on PCDTBT/[60]PCBM blends hold a promise to deliver lifetimes well above 10 years. The revealed impressive radiation stability of PCDTBT/[60]PCBM blends in combination with other advantages of organic solar cells, for example, their mechanical flexibility and lightweight, points to a bright future of this PV technology in space industry applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...