Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(2): L022601, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932538

ABSTRACT

Intense surface eruptions are observed along the curved surface of a confined cylindrical film of hydrogel subject to laser-induced converging-diverging shock loading. Detailed numerical simulations are used to identify the dominant mechanisms causing mechanical instability. The mechanisms that produce surface instability are found to be fundamentally different from both acoustic parametric instability and shock-driven Richtmyer-Meshkov instability. The time scale of observed and simulated eruption formation is much larger than that of a single shock reflection, in stark contrast to previously studied shock-driven instabilities. Moreover, surface undulations are only found along external, as opposed to internal, soft solid boundaries. Specifically, classic bubble surface instability mechanisms do not occur in our experiments and here we comment only on the new surface undulations found along the outer boundary of solid hydrogel cylinders. Our findings indicate a new class of impulsively excited surface instability that is driven by cycles of internal shock reflections.

2.
Sci Rep ; 11(1): 2775, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531539

ABSTRACT

Target delivery of large foreign materials to cells requires transient permeabilization of the cell membrane without toxicity. Giant unilamellar vesicles (GUVs) mimic the phospholipid bilayer of the cell membrane and are also useful drug delivery vehicles. Controlled increase of the permeability of GUVs is a delicate balance between sufficient perturbation for the delivery of the GUV contents and damage to the vesicles. Here we show that photoacoustic waves can promote the release of FITC-dextran or GFP from GUVs without damage. Real-time interferometric imaging offers the first movies of photoacoustic wave propagation and interaction with GUVs. The photoacoustic waves are seen as mostly compressive half-cycle pulses with peak pressures of ~ 1 MPa and spatial extent FWHM ~ 36 µm. At a repetition rate of 10 Hz, they enable the release of 25% of the FITC-dextran content of GUVs in 15 min. Such photoacoustic waves may enable non-invasive targeted release of GUVs and cell transfection over large volumes of tissues in just a few minutes.

3.
Rev Sci Instrum ; 91(3): 033711, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32259926

ABSTRACT

We describe a high-speed single-shot multi-frame interferometric imaging technique enabling multiple interferometric images with femtosecond exposure time over a 50 ns event window to be recorded, following a single laser-induced excitation event. The stroboscopic illumination of a framing camera is made possible through the use of a doubling cavity that produces a femtosecond pulse train that is synchronized to the gated exposure windows of the individual frames of the camera. The imaging system utilizes a Michelson interferometer to extract phase and ultimately displacement information. We demonstrate the method by monitoring laser-induced deformation and the propagation of high-amplitude acoustic waves in a silicon nitride membrane. The method is applicable to a wide range of fast irreversible phenomena such as crack branching, shock-induced material damage, cavitation, and dielectric breakdown.

4.
J Phys Chem A ; 124(17): 3301-3313, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32009390

ABSTRACT

We demonstrate a strongly thresholded response in cyclotrimethylene trinitramine (RDX) when it is cylindrically shocked using a novel waveguide geometry. Using ultrafast single-shot multi-frame imaging, we demonstrate that <100 µm diameter single crystals of RDX embedded in a polymer host deform along preferential planes for >100 ns after the shock first arrives in the crystal. We use in situ imaging and time-resolved photoemission to demonstrate that short-lived chemistry occurs with complex deformation pathways. Using scanning electron microscopy and ultra-small-angle X-ray scattering, we demonstrate that the shock-induced dynamics leave behind porous crystals, with pore shapes and sizes that change significantly with shock pressure. A threshold pressure of ∼12 GPa at the center of convergence separated the single-mode planar crystal deformations from the chemistry-coupled multi-plane dynamics at higher pressures. Our observations indicate preferential directions for deformation in our cylindrically shocked system, despite the applied stress along many different crystallographic planes.

5.
Sci Rep ; 9(1): 3689, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30842469

ABSTRACT

We demonstrate single-shot multi-frame imaging of quasi-2D cylindrically converging shock waves as they propagate through a multi-layer target sample assembly. We visualize the shock with sequences of up to 16 images, using a Fabry-Perot cavity to generate a pulse train that can be used in various imaging configurations. We employ multi-frame shadowgraph and dark-field imaging to measure the amplitude and phase of the light transmitted through the shocked target. Single-shot multi-frame imaging tracks geometric distortion and additional features in our images that were not previously resolvable in this experimental geometry. Analysis of our images, in combination with simulations, shows that the additional image features are formed by a coupled wave structure resulting from interface effects in our targets. This technique presents a new capability for tabletop imaging of shock waves that can be extended to experiments at large-scale facilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...