Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 37(21): 4425-7, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23114317

ABSTRACT

Laboratory water window cryomicroscopy has recently demonstrated similar image quality as synchrotron-based microscopy but still with much longer exposure times, prohibiting the spread to a wider scientific community. Here we demonstrate high-resolution laboratory water window imaging of cryofrozen cells with 10 s range exposure times. The major improvement is the operation of a λ=2.48 nm, 2 kHz liquid nitrogen jet laser plasma source with high spatial and temporal stability at high average brightness >1.5×10(12) ph/(s×sr×µm(2)×line), i.e., close to that of early synchrotrons. Thus, this source enables not only biological x-ray microscopy in the home laboratory but potentially other applications previously only accessible at synchrotron facilities.


Subject(s)
Cryopreservation , Microscopy/methods , Water , B-Lymphocytes/cytology , Humans , Time Factors , X-Rays
2.
Opt Express ; 20(16): 18362-9, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-23038387

ABSTRACT

We present a laser plasma based x-ray microscope for the water window employing a high-average power laser system for plasma generation. At 90 W laser power a brightness of 7.4 x 10(11) photons/(s x sr x µm(2)) was measured for the nitrogen Lyα line emission at 2.478 nm. Using a multilayer condenser mirror with 0.3 % reflectivity 10(6) photons/(µm(2) x s) were obtained in the object plane. Microscopy performed at a laser power of 60 W resolves 40 nm lines with an exposure time of 60 s. The exposure time can be further reduced to 20 s by the use of new multilayer condenser optics and operating the laser at its full power of 130 W.

3.
Opt Express ; 19(13): 12087-92, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21716445

ABSTRACT

The temporal coherence of an injection-seeded transient 18.9 nm molybdenum soft x-ray laser was measured using a wavefront division interferometer and compared to model simulations. The seeded laser is found to have a coherence time similar to that of the unseeded amplifier, ~1 ps, but a significantly larger degree of temporal coherence. The measured coherence time for the unseeded amplifier is only a small fraction of the pulsewidth, while in the case of the seeded laser it approaches full temporal coherence. The measurements confirm that the bandwidth of the solid target amplifiers is significantly wider than that of soft x-ray lasers that use gaseous targets, an advantage for the development of sub-picosecond soft x-ray lasers.


Subject(s)
Gases/chemistry , Interferometry/instrumentation , Lasers , Molybdenum/chemistry , Amplifiers, Electronic , Computer Simulation , Equipment Design , Fourier Analysis , Models, Theoretical , Ultraviolet Rays , X-Rays
4.
Opt Lett ; 35(10): 1632-4, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20479832

ABSTRACT

We have demonstrated repetitive operation of a table-top lambda=13.9 nm Ni-like Ag soft-x-ray laser that generates laser pulses with 10 microJ energy. The soft-x-ray laser is enabled by a Ti:sapphire laser pumped by high-repetition-rate frequency-doubled high-energy Nd:glass slab amplifiers. Soft-x-ray laser operation at 2.5 Hz repetition rate resulted in 20 microwatt average power.

5.
Opt Lett ; 35(3): 414-6, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20125739

ABSTRACT

We report the demonstration of a gain-saturated 10.9 nm tabletop soft x-ray laser operating at 1 Hz repetition rate. Lasing occurs by collisional electron impact excitation in the 4dS01-->4pP11 transition of nickel-like Te in a line-focus plasma heated by a chirped-pulse-amplification Ti:sapphire laser. With an average power of 1muW and pulse energy up to approximately 2microJ, this laser extends the ability to conduct tabletop laser experiments to a shorter wavelength.

6.
Opt Express ; 17(26): 23809-16, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20052091

ABSTRACT

We have demonstrated broad bandwidth large area (229 mm x 114 mm) multilayer dielectric diffraction gratings for the efficient compression of high energy 800 nm laser pulses at high average power. The gratings are etched in the top layers of an aperiodic (Nb0.5Ta0.5)2O5-SiO2 multilayer coating deposited by ion beam sputtering. The mean efficiency of the grating across the area is better than 97% at the center wavelength and remains above 96% at wavelengths between 820 nm and 780 nm. The gratings were used to compress 5.5 J pulses from a Ti:sapphire laser with an efficiency above 80 percent.


Subject(s)
Lasers , Lighting/instrumentation , Refractometry/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...