Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 18(11): 3258-63, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22311830

ABSTRACT

A supramolecular system that can activate an enzyme through photo-isomerization was constructed by using a liposomal membrane scaffold. The design of the system was inspired by natural signal transduction systems, in which enzymes amplify external signals to control signal transduction pathways. The liposomal membrane, which provided a scaffold for the system, was prepared by self-assembly of a photoresponsive receptor and a cationic synthetic lipid. NADH-dependent L-lactate dehydrogenase, the signal amplifier, was immobilized on the liposomal surface by electrostatic interactions. Recognition of photonic signals by the membrane-bound receptor induced photo-isomerization, which significantly altered the receptor's metal-binding affinity. The response to the photonic signal was transmitted to the enzyme by Cu(2+) ions. The enzyme amplified the chemical information through a catalytic reaction to generate the intended output signal.


Subject(s)
L-Lactate Dehydrogenase/metabolism , Liposomes/chemistry , Signal Transduction/physiology , Catalysis , Photochemical Processes , Receptors, Cell Surface/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...