Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Publication year range
1.
Biotechnol Bioeng ; 118(4): 1491-1510, 2021 04.
Article in English | MEDLINE | ID: mdl-33404064

ABSTRACT

This paper reports the first implementation of a new type of mass spectral library for the analysis of Chinese hamster ovary (CHO) cell metabolites that allows users to quickly identify most compounds in any complex metabolite sample. We also describe an annotation methodology developed to filter out artifacts and low-quality spectra from recurrent unidentified spectra of metabolites. CHO cells are commonly used to produce biological therapeutics. Metabolic profiles of CHO cells and media can be used to monitor process variability and look for markers that discriminate between batches of product. We have created a comprehensive library of both identified and unidentified metabolites derived from CHO cells that can be used in conjunction with tandem mass spectrometry to identify metabolites. In addition, we present a workflow that can be used for assigning confidence to a NIST MS/MS Library search match based on prior probability of general utility. The goal of our work is to annotate and identify (when possible), all liquid chromatography-mass spectrometry generated metabolite ions as well as create automatable library building and identification pipelines for use by others in the field.


Subject(s)
Metabolome , Metabolomics , Small Molecule Libraries , Animals , CHO Cells , Cricetulus , Culture Media/chemistry
2.
Anal Chem ; 92(9): 6521-6528, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32271007

ABSTRACT

We describe the creation of a mass spectral library of acylcarnitines and conjugated acylcarnitines from the LC-MS/MS analysis of six NIST urine reference materials. To recognize acylcarnitines, we conducted in-depth analyses of fragmentation patterns of acylcarnitines and developed a set of rules, derived from spectra in the NIST17 Tandem MS Library and those identified in urine, using the newly developed hybrid search method. Acylcarnitine tandem spectra were annotated with fragments from carnitine and acyl moieties as well as neutral loss peaks from precursors. Consensus spectra were derived from spectra having similar retention time, fragmentation pattern, and the same precursor m/z and collision energy. The library contains 157 different precursor masses, 586 unique acylcarnitines, and 4 332 acylcarnitine consensus spectra. Furthermore, from spectra that partially satisfied the fragmentation rules of acylcarnitines, we identified 125 conjugated acylcarnitines represented by 987 consensus spectra, which appear to originate from Phase II biotransformation reactions. To our knowledge, this is the first report of conjugated acylcarnitines. The mass spectra provided by this work may be useful for clinical screening of acylcarnitines as well as for studying relationships among fragmentation patterns, collision energies, structures, and retention times of acylcarnitines. Further, these methods are extensible to other classes of metabolites.


Subject(s)
Carnitine/analogs & derivatives , Carnitine/chemistry , Carnitine/metabolism , Carnitine/urine , Chromatography, Liquid , Humans , Molecular Structure , Tandem Mass Spectrometry
4.
Metabolites ; 9(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703392

ABSTRACT

There is a lack of experimental reference materials and standards for metabolomics measurements, such as urine, plasma, and other human fluid samples. Reasons include difficulties with supply, distribution, and dissemination of information about the materials. Additionally, there is a long lead time because reference materials need their compositions to be fully characterized with uncertainty, a labor-intensive process for material containing thousands of relevant compounds. Furthermore, data analysis can be hampered by different methods using different software by different vendors. In this work, we propose an alternative implementation of reference materials. Instead of characterizing biological materials based on their composition, we propose using untargeted metabolomic data such as nuclear magnetic resonance (NMR) or gas and liquid chromatography-mass spectrometry (GC-MS and LC-MS) profiles. The profiles are then distributed with the material accompanying the certificate, so that researchers can compare their own metabolomic measurements with the reference profiles. To demonstrate this approach, we conducted an interlaboratory study (ILS) in which seven National Institute of Standards and Technology (NIST) urine Standard Reference Material®s (SRM®s) were distributed to participants, who then returned the metabolomic data to us. We then implemented chemometric methods to analyze the data together to estimate the uncertainties in the current measurement techniques. The participants identified similar patterns in the profiles that distinguished the seven samples. Even when the number of spectral features is substantially different between platforms, a collective analysis still shows significant overlap that allows reliable comparison between participants. Our results show that a urine suite such as that used in this ILS could be employed for testing and harmonization among different platforms. A limited quantity of test materials will be made available for researchers who are willing to repeat the protocols presented here and contribute their data.

5.
Anal Chem ; 91(18): 12021-12029, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31424920

ABSTRACT

A large fraction of ions observed in electrospray liquid chromatography-mass spectrometry (LC-ESI-MS) experiments of biological samples remain unidentified. One of the main reasons for this is that spectral libraries of pure compounds fail to account for the complexity of the metabolite profiling of complex materials. Recently, the NIST Mass Spectrometry Data Center has been developing a novel type of searchable mass spectral library that includes all recurrent unidentified spectra found in the sample profile. These libraries, in conjunction with the NIST tandem mass spectral library, allow analysts to explore most of the chemical space accessible to LC-MS analysis. In this work, we demonstrate how these libraries can provide a reliable fingerprint of the material by applying them to a variety of urine samples, including an extremely altered urine from cancer patients undergoing total body irradiation. The same workflow is applicable to any other biological fluid. The selected class of acylcarnitines is examined in detail, and derived libraries and related software are freely available. They are intended to serve as online resources for continuing community review and improvement.


Subject(s)
Body Fluids/chemistry , Carnitine/analogs & derivatives , Neoplasms/urine , Small Molecule Libraries/analysis , Carnitine/urine , Chromatography, Liquid , Humans , Mass Spectrometry , Software
6.
J Sci Food Agric ; 98(15): 5572-5580, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29971799

ABSTRACT

Soybean is one of the best sources of plant protein. Development of improved soybean cultivars through classical breeding and new biotech approaches is important to meet the growing global demand for soybeans. There is a critical need to investigate changes in protein content and profiles to ensure the safety and nutritional quality of new soybean varieties and their food products. A proteomics study begins with an optimal combination of extraction, separation and detection approaches. This review attempts to provide a summary of current updates in the methodologies used for extraction, separation and detection of protein from soybean, the basic foundations for good proteomic research. This information can be effectively used to investigate modifications in protein content and profiles in new varieties of soybeans and other crops. © 2018 Society of Chemical Industry.


Subject(s)
Glycine max/chemistry , Soybean Proteins/isolation & purification , Animals , Humans , Nutritive Value , Plant Breeding , Proteomics , Seeds/chemistry , Soybean Proteins/chemistry , Soybean Proteins/genetics , Soybean Proteins/metabolism , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism
7.
J Pharm Anal ; 4(2): 107-116, 2014 Apr.
Article in English | MEDLINE | ID: mdl-29403872

ABSTRACT

A simple, precise, accurate stability-indicating gradient reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed for the quantitative determination of zotepine (ZTP) in bulk and pharmaceutical dosage forms in the presence of its degradation products (DPs). The method was developed using Phenomenex C18 column (250 mm×4.6 mm i.d., 5 µm) with a mobile phase containing a gradient mixture of solvents, A (0.05% trifluoroacetic acid (TFA), pH=3.0) and B (acetonitrile). The eluted compounds were monitored at 254 nm; the run time was within 20.0 min, in which ZTP and its DPs were well separated, with a resolution of >1.5. The stress testing of ZTP was carried out under acidic, alkaline, neutral hydrolysis, oxidative, photolytic and thermal stress conditions. ZTP was found to degrade significantly in acidic, photolytic, thermal and oxidative stress conditions and remain stable in basic and neutral conditions. The developed method was validated with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness as per ICH guidelines. This method was also suitable for the assay determination of ZTP in pharmaceutical dosage forms. The DPs were characterized by LC-MS/MS and their fragmentation pathways were proposed.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-672135

ABSTRACT

A simple, precise, accurate stability-indicating gradient reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed for the quantitative determination of zotepine (ZTP) in bulk and pharmaceutical dosage forms in the presence of its degradation products (DPs). The method was developed using Phenomenex C18 column (250 mm ~ 4.6 mm i.d., 5 mm) with a mobile phase containing a gradient mixture of solvents, A (0.05%trifluoroacetic acid (TFA), pH ? 3.0) and B (acetonitrile). The eluted compounds were monitored at 254 nm;the run time was within 20.0 min, in which ZTP and its DPs were well separated, with a resolution of 41.5. The stress testing of ZTP was carried out under acidic, alkaline, neutral hydrolysis, oxidative, photolytic and thermal stress conditions. ZTP was found to degrade significantly in acidic, photolytic, thermal and oxidative stress conditions and remain stable in basic and neutral conditions. The developed method was validated with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness as per ICH guidelines. This method was also suitable for the assay determination of ZTP in pharmaceutical dosage forms. The DPs were characterized by LC-MS/MS and their fragmentation pathways were proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...