Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol J ; 17(7): e2100499, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35481906

ABSTRACT

Difficulties in obtaining and maintaining the desired level of the critical quality attributes (CQAs) of therapeutic proteins as well as the pace of the development are major challenges of current biopharmaceutical development. Therapeutic proteins, both innovative and biosimilars, are mostly glycosylated. Glycans directly influence the stability, potency, plasma half-life, immunogenicity, and effector functions of the therapeutic. Hence, glycosylation is widely recognized as a process-dependent CQA of therapeutic glycoproteins. Due to the typically high heterogeneity of glycoforms attached to the proteins, control of glycosylation represents one of the most challenging aspects of biopharmaceutical development. Here, we explored a new glycoengineering approach in therapeutic glycoproteins development, which enabled us to achieve the targeted glycoprofile of the Fc-fusion protein in a fast manner. Coupling CRISPRi technology with lectin-FACS sorting enabled downregulation of the endogenous gene involved in fucosylation and further enrichment of CHO cells producing Fc-fusion proteins with reduced fucosylation levels. Enrichment of cells with targeted glycoprofile can lead to time-optimized clone screening and speed up cell line development. Moreover, the presented approach allows isolation of clones with varying levels of fucosylation, which makes it applicable to a broad range of glycoproteins differing in target fucosylation level.


Subject(s)
Biosimilar Pharmaceuticals , Animals , CHO Cells , Clustered Regularly Interspaced Short Palindromic Repeats , Cricetinae , Cricetulus , Glycoproteins/genetics , Polysaccharides
2.
Sci Rep ; 6: 32201, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27578487

ABSTRACT

Biosimilar drug products must have a demonstrated similarity with respect to the reference product's molecules in order to ensure both the effectiveness of the drug and the patients' safety. In this paper the fusion framework of a highly sensitive NMR fingerprinting approach for conformational changes and mathematically-based biosimilarity metrics is introduced. The final goal is to translate the complex spectral information into biosimilarity scores, which are then used to estimate the degree of similarity between the biosimilar and the reference product. The proposed method was successfully applied to a small protein, i.e., filgrastim (neutropenia treatment), which is the first biosimilar approved in the United States, and a relatively large protein, i.e., monoclonal antibody rituximab (lymphoma treatment). This innovative approach introduces a new level of sensitivity to structural changes that are induced by, e.g., a small pH shift or other changes in the protein formulation.


Subject(s)
Biosimilar Pharmaceuticals/chemistry , Filgrastim/chemistry , Nuclear Magnetic Resonance, Biomolecular , Rituximab/chemistry
3.
J Biol Chem ; 287(11): 8613-20, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22262846

ABSTRACT

Human tumor necrosis factor α (TNF-α) exists in its functional state as a homotrimeric protein and is involved in inflammation processes and immune response of a human organism. Overproduction of TNF-α results in the development of chronic autoimmune diseases that can be successfully treated by inhibitors such as monoclonal antibodies. However, the nature of antibody-TNF-α recognition remains elusive due to insufficient understanding of its molecular driving forces. Therefore, we studied the energetics of binding of a therapeutic antibody fragment (Fab) to the native and non-native forms of TNF-α by employing calorimetric and spectroscopic methods. Global thermodynamic analysis of data obtained from the corresponding binding and urea-induced denaturation experiments has been supported by structural modeling. We demonstrate that the observed high affinity binding of Fab to TNF-α is an enthalpy-driven process due mainly to specific noncovalent interactions taking place at the TNF-α-Fab binding interface. It is coupled to entropically unfavorable conformational changes and accompanied by entropically favorable solvation contributions. Moreover, the three-state model analysis of TNF-α unfolding shows that at physiological concentrations, TNF-α may exist not only as a biologically active trimer but also as an inactive monomer. It further suggests that even small changes of TNF-α concentration could have a considerable effect on the TNF-α activity. We believe that this study sets the energetic basis for understanding of TNF-α inhibition by antibodies and its unfolding linked with the concentration-dependent activity regulation.


Subject(s)
Antibody Affinity/physiology , Binding Sites, Antibody , Immunoglobulin Fab Fragments/chemistry , Protein Folding , Protein Multimerization , Tumor Necrosis Factor-alpha/chemistry , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/therapeutic use , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship , Thermodynamics , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...