Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Med Sci ; 78(9): 1413-1420, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27246398

ABSTRACT

Podocytes are terminally differentiated and highly specialized cells in the glomerulus, and they form a crucial component of the glomerular filtration barrier. The ICGN mouse is a model of glomerular dysfunction that shows gross morphological changes in the podocyte foot process, accompanied by proteinuria. Previously, we demonstrated that proteinuria in ICR-derived glomerulonephritis mouse ICGN mice might be caused by a deletion mutation in the tensin2 (Tns2) gene (designated Tns2nph). To test whether this mutation causes the mutant phenotype, we created knockout (KO) mice carrying a Tns2 protein deletion in the C-terminal Src homology and phosphotyrosine binding (SH2-PTB) domains (designated Tns2ΔC) via CRISPR/Cas9-mediated genome editing. Tns2nph/Tns2ΔC compound heterozygotes and Tns2ΔC/Tns2ΔC homozygous KO mice displayed podocyte abnormalities and massive proteinuria similar to ICGN mice, indicating that these two mutations are allelic. Further, this result suggests that the SH2-PTB domain of Tns2 is required for podocyte integrity. Tns2 knockdown in a mouse podocyte cell line significantly enhanced actin stress fiber formation and cell migration. Thus, this study provides evidence that alteration of actin remodeling resulting from Tns2 deficiency causes morphological changes in podocytes and subsequent proteinuria.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Proteinuria/etiology , Tensins/physiology , Animals , Disease Models, Animal , Female , Kidney Glomerulus/pathology , Mice , Mice, Knockout , Mutation/genetics , Podocytes/metabolism , Polypyrimidine Tract-Binding Protein , Proteinuria/genetics , Sclerosis , Tensins/genetics
2.
BMC Genet ; 17(1): 69, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27230548

ABSTRACT

BACKGROUND: Tensin2 deficiency results in alterations in podocytes and subsequent glomerular and tubulointerstitial injuries. However, this pathology is critically dependent on genetic background. While the Tensin2-deficient podocytes of resistant murine strains, including C57BL/6J mice, remain almost intact, susceptible murine strains with Tensin2 deficency, including ICGN mice, develop chronic kidney disease following alterations in the podocyte foot processes. In a previous study, genome-wide linkage analysis was utilized to identify the quantitative trait loci associated with the disease phenotypes on mouse chromosome 2. This study investigated the disease phenotypes of chromosome 2 consomic and subcongenic strains. RESULTS: ICGN consomic mice introgressed with chromosome 2 from the C57BL/6J mouse were generated and found to exhibit milder renal failure than that in ICGN mice. We developed 6 subcongenic strains that carry C57BL/6J-derived chromosomal segments from the consomic strain. One showed significantly milder albuminuria, another showed significantly milder tubulointerstitial injury, and the both showed significantly milder glomerular injury. CONCLUSIONS: These data indicate that mouse chromosome 2 harbors two major genes associated with the severities of nephropathy induced by Tensin2 deficiency. The proximal region on chromosome 2 contributes to the resistance to tubulointerstitial fibrosis. In contrast, the distal region on chromosome 2 contributes to the resistance to podocyte injury. This study would be helpful to discover the biological mechanism underlying the renal injury, and may lead to the identification of therapeutic targets.


Subject(s)
Chromosomes, Mammalian/genetics , Disease Resistance/genetics , Kidney Tubules/pathology , Podocytes/pathology , Animals , Chromosome Mapping , Female , Fibrosis , Genetic Loci/genetics , Homozygote , Mice , Mice, Inbred C57BL , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
3.
Biomed Res ; 36(5): 323-30, 2015.
Article in English | MEDLINE | ID: mdl-26522149

ABSTRACT

Tensin2 (Tns2) is thought to be a component of the cytoskeletal structures linking actin filaments with focal adhesions and is known to play a role as an intracellular signal transduction mediator through integrin in podocytes, although the mechanism by which it functions remains unclear. A Tns2-null mutation (nph) leads to massive albuminuria following podocyte foot process effacement in the ICGN mice, the origin of the mutation, and the DBA/2J (D2) mice, but not in the C57BL/6J (B6) mice or 129(+Ter)/SvJcl (129T) mice. Elucidating the reasons for these differences in diverse genetic backgrounds could help in unraveling Tns2 function in podocytes. We produced congenic mice in which Tns2(nph) was introgressed into a FVB/NJ background (FVB-Tns2(nph)), and evaluated the progression of kidney disease. FVB-Tns2(nph) mice developed albuminuria, renal fibrosis and renal anemia as seen in ICGN mice. The FVB-Tns2(nph) mice demonstrated podocyte foot process alteration under an electron microscope by as early as 4 weeks of age. This revealed that FVB strain is susceptible to Tns2-deficiency.


Subject(s)
Phosphoprotein Phosphatases/genetics , Renal Insufficiency/genetics , Animals , Mice , Tensins
SELECTION OF CITATIONS
SEARCH DETAIL
...