Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Open Bio ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837610

ABSTRACT

The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently targeted to the mitochondrial surface. Their further import into the organelle is facilitated by highly specialized protein translocases. Mitochondrial precursor proteins that are destined to the mitochondrial matrix and, to some extent, the inner membrane, utilize translocase of the inner membrane (TIM23). This indispensable import machinery has been extensively studied in yeast. The translocating unit of the TIM23 complex in yeast consists of two membrane proteins, Tim17 and Tim23. In contrast to previous findings, recent reports demonstrate the primary role of Tim17, rather than Tim23, in the translocation of newly synthesized proteins. Very little is known about human TIM23 translocase. Human cells have two orthologs of yeast Tim17, TIMM17A and TIMM17B. Here, using computational tools, we present the architecture of human core TIM23 variants with either TIMM17A or TIMM17B, forming two populations of highly similar complexes. The structures reveal high conservation of the core TIM23 complex between human and yeast. Interestingly, both TIMM17A and TIMM17B variants interact with TIMM23 and reactive oxygen species modulator 1 (ROMO1); a homolog of yeast Mgr2, a protein that can create a channel-like structure with Tim17. The high structural conservation of proteins that form the core TIM23 complex in yeast and humans raises an interesting question about mechanistic and functional differences that justify existence of the two variants of TIM23 in higher eukaryotes.

2.
FEBS Lett ; 597(12): 1555-1568, 2023 06.
Article in English | MEDLINE | ID: mdl-37276075

ABSTRACT

Mitochondria are organelles indispensable for the correct functioning of eukaryotic cells. Their significance for cellular homeostasis is manifested by the existence of complex quality control pathways that monitor organellar fitness. Mitochondrial biogenesis relies on the efficient import of mitochondrial precursor proteins, a large majority of which are encoded by nuclear DNA and synthesized in the cytosol. This creates a demand for highly specialized import routes that comprise cytosolic factors and organellar translocases. The passage of newly encoded mitochondrial precursor proteins through the cytosol to the translocase of the outer mitochondrial membrane (TOM) is under tight surveillance. As a result of mitochondrial import defects, mitochondrial precursor proteins accumulate in the cytosol or clog the TOM complex, which in turn stimulates cellular stress responses to minimize the consequences of these challenges. These responses are critical for maintaining protein homeostasis under conditions of mitochondrial stress. The present review summarizes recent advances in the field of mitochondrial protein import quality control and discusses the role of this quality control within the network of cellular mechanisms that maintain the cellular homeostasis of proteins.


Subject(s)
Mitochondria , Proteostasis , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Carrier Proteins/metabolism , Protein Transport/genetics , Homeostasis
3.
J Mol Med (Berl) ; 100(5): 747-762, 2022 05.
Article in English | MEDLINE | ID: mdl-35391620

ABSTRACT

Mitochondria dysfunction is involved in the pathomechanism of many illnesses including Parkinson's disease. PINK1, which is mutated in some cases of familial Parkinsonism, is a key component in the degradation of damaged mitochondria by mitophagy. The accumulation of PINK1 on the mitochondrial outer membrane (MOM) of compromised organelles is crucial for the induction of mitophagy, but the molecular mechanism of this process is still unresolved. Here, we investigate the association of PINK1 with the TOM complex. We demonstrate that PINK1 heavily relies on the import receptor TOM70 for its association with mitochondria and directly interacts with this receptor. The structural protein TOM7 appears to play only a moderate role in PINK1 association with the TOM complex, probably due to its role in stabilizing this complex. PINK1 requires the TOM40 pore lumen for its stable interaction with the TOM complex and apparently remains there during its further association with the MOM. Overall, this study provides new insights on the role of the individual TOM subunits in the association of PINK1 with the MOM of depolarized mitochondria. KEY MESSAGES: TOM70 is the main receptor for the import of PINK1 into mitochondria. TOM20 plays only a minor role in PINK1 recognition at the organellar outer membrane. PINK1 association with the TOM complex is reduced upon knock-down of TOM7. The lumen of the TOM pore is crucial for PINK1 association with the outer membrane. TcPINK1 blocks the TOM pore in depolarized mitochondria.


Subject(s)
Mitochondria , Mitochondrial Membrane Transport Proteins , Carrier Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitophagy , Protein Kinases/genetics , Protein Kinases/metabolism
4.
Protein Sci ; 30(6): 1196-1209, 2021 06.
Article in English | MEDLINE | ID: mdl-33884680

ABSTRACT

Polymerase δ-interacting protein 2 (POLDIP2, PDIP38) is a multifaceted, "moonlighting" protein, involved in binding protein partners from many different cellular processes, including mitochondrial metabolism and DNA replication and repair. How POLDIP2 interacts with many different proteins is unknown. Towards this goal, we present the crystal structure of POLDIP2 to 2.8 Å, which exhibited a compact two-domain ß-strand-rich globular structure, confirmed by circular dichroism and small angle X-ray scattering approaches. POLDIP2 comprised canonical DUF525 and YccV domains, but with a conserved domain linker packed tightly, resulting in an "extended" YccV module. A central channel was observed, which we hypothesize could influence structural changes potentially mediated by redox conditions, following observation of a modified cysteine residue in the channel. Unstructured regions were rebuilt by ab initio modelling to generate a model of full-length POLDIP2. Molecular dynamics simulations revealed a highly dynamic N-terminal region tethered to the YccV-domain by an extended linker, potentially facilitating interactions with distal binding partners. Models of POLDIP2 complexed with two of its partners, PrimPol and PCNA, indicated that dynamic flexibility of the POLDIP2 N-terminus and loop regions likely mediate protein interactions.


Subject(s)
Genome, Human , Genomic Instability , Nuclear Proteins/chemistry , Crystallography, X-Ray , Humans , Nuclear Proteins/genetics , Protein Domains
5.
iScience ; 23(12): 101797, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33299968

ABSTRACT

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-Parkin mediated mitophagy has been well studied, but the relevance of the endogenous process in the brain is debated. Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-induced mitophagy and reduces mitochondrial membrane potential. Compensatory, mitochondrial renewal maintains mitochondrial morphology and protects the respiratory chain. This is paralleled by metabolic changes, including inhibition of the TCA cycle enzyme mAconitase, accumulation of NAD+, and metabolite depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting its synthesis and uptake. The mechanism involves steering of key amino acids toward energy production rather than neurotransmitter metabolism and involves cofactors related to the vitamin B6 salvage pathway identified using unbiased multi-omics approaches. We propose that reduction of mitochondrial membrane potential that cannot be controlled by PINK1 signaling initiates metabolic compensation that has neurometabolic consequences relevant to Parkinson disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...