Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 7: 740, 2016.
Article in English | MEDLINE | ID: mdl-27242755

ABSTRACT

Campylobacter spp, especially the species Campylobacter jejuni, are important human enteropathogens responsible for millions of cases of gastro-intestinal disease worldwide every year. C. jejuni is a zoonotic pathogen, and poultry meat that has been contaminated by microorganisms is recognized as a key source of human infections. Although numerous strategies have been developed and experimentally checked to generate chicken vaccines, the results have so far had limited success. In this study, we explored the potential use of non-live carriers of Campylobacter antigen to combat Campylobacter in poultry. First, we assessed the effectiveness of immunization with orally or subcutaneously delivered Gram-positive Enhancer Matrix (GEM) particles carrying two Campylobacter antigens: CjaA and CjaD. These two immunization routes using GEMs as the vector did not protect against Campylobacter colonization. Thus, we next assessed the efficacy of in ovo immunization using various delivery systems: GEM particles and liposomes. The hybrid protein rCjaAD, which is CjaA presenting CjaD epitopes on its surface, was employed as a model antigen. We found that rCjaAD administered in ovo at embryonic development day 18 by both delivery systems resulted in significant levels of protection after challenge with a heterologous C. jejuni strain. In practice, in ovo chicken vaccination is used by the poultry industry to protect birds against several viral diseases. Our work showed that this means of delivery is also efficacious with respect to commensal bacteria such as Campylobacter. In this study, we evaluated the protection after one dose of vaccine given in ovo. We speculate that the level of protection may be increased by a post-hatch booster of orally delivered antigens.

2.
J Mol Microbiol Biotechnol ; 25(1): 1-10, 2015.
Article in English | MEDLINE | ID: mdl-25662187

ABSTRACT

BACKGROUND: Food poisoning and diarrheal diseases continue to pose serious health care and socioeconomic problems worldwide. Campylobacter spp. is a very widespread cause of gastroenteritis. Over the past decade there has been increasing interest in the use of lactic acid bacteria (LAB) as mucosal delivery vehicles. They represent an attractive opportunity for vaccination in addition to vaccination with attenuated bacterial pathogens. METHODS: We examined the binding ability of hybrid proteins to nontreated or trichloroacetic acid (TCA)-pretreated LAB cells by immunofluorescence and Western blot analysis. RESULTS: In this study we evaluated the possibility of using GEM (Gram-positive enhancer matrix) particles of Lactobacillus salivarius as a binding platform for 2 conserved, immunodominant, extracytoplasmic Campylobacter jejuni proteins: CjaA and CjaD. We analyzed the binding ability of recombinant proteins that contain C. jejuni antigens (CjaA or CjaD) fused with the protein anchor (PA) of the L. lactis peptidoglycan hydrolase AcmA, which comprises 3 LysM motifs and determines noncovalent binding to the cell wall peptidoglycan. Both fused proteins, i.e. 6HisxCjaAx3LysM and 6HisxCjaDx3LysM, were able to bind to nontreated or TCA-pretreated L. salivarius cells. CONCLUSION: Our results documented that the LysM-mediated binding system allows us to construct GEM particles that present 2 C. jejuni antigens.


Subject(s)
Antigens, Bacterial/genetics , Antigens, Bacterial/metabolism , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism , Cell Surface Display Techniques/methods , Lactobacillus/metabolism , Drug Carriers/metabolism , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...